Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Persoonia ; 28: 138-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23105159

RESUMO

Novel species of microfungi described in the present study include the following from Australia: Phytophthora amnicola from still water, Gnomoniopsis smithogilvyi from Castanea sp., Pseudoplagiostoma corymbiae from Corymbia sp., Diaporthe eucalyptorum from Eucalyptus sp., Sporisorium andrewmitchellii from Enneapogon aff. lindleyanus, Myrmecridium banksiae from Banksia, and Pilidiella wangiensis from Eucalyptus sp. Several species are also described from South Africa, namely: Gondwanamyces wingfieldii from Protea caffra, Montagnula aloes from Aloe sp., Diaporthe canthii from Canthium inerne, Phyllosticta ericarum from Erica gracilis, Coleophoma proteae from Protea caffra, Toxicocladosporium strelitziae from Strelitzia reginae, and Devriesia agapanthi from Agapanthus africanus. Other species include Phytophthora asparagi from Asparagus officinalis (USA), and Diaporthe passiflorae from Passiflora edulis (South America). Furthermore, novel genera of coelomycetes include Chrysocrypta corymbiae from Corymbia sp. (Australia), Trinosporium guianense, isolated as a contaminant (French Guiana), and Xenosonderhenia syzygii, from Syzygium cordatum (South Africa). Pseudopenidiella piceae from Picea abies (Czech Republic), and Phaeocercospora colophospermi from Colophospermum mopane (South Africa) represent novel genera of hyphomycetes. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

2.
Phytopathology ; 99(11): 1258-64, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19821729

RESUMO

Understanding the mechanisms of Phytophthora capsici sporangial dissemination is paramount to understanding epidemic initiation and development. Direct laboratory observations showed P. capsici sporangial dispersal occurred in water with capillary force, but did not occur in response to wind or a reduction in relative humidity. Atmospheric sporangial concentrations were monitored under field conditions using a volumetric spore sampler in a commercial cucurbit field and in an experimental setting where copious sporangia were continuously available in close proximity to the spore trap. Dispersal was infrequent (0.7% of total hours monitored) during sampling in a commercial field; 14 sporangia were detected during a 7.5-week sampling period. In the experimental field situation, dispersal occurred in 4.6% of the hours sampled and 438 sporangia were impacted onto tapes during a 7-week sampling period. Airborne sporangial concentrations were positively associated with rainfall at both sites, but not vapor pressure deficit. Furthermore, in the experimental field situation, wind speed was not significant in regression analysis. Wind speed was not measured in the commercial field. Hence, both direct laboratory observations and volumetric spore sampling indicate that dispersal of sporangia via wind currents is infrequent, and sporangia are unlikely to be naturally dispersed among fields by wind alone.


Assuntos
Phytophthora/fisiologia , Esporos Fúngicos/fisiologia , Capsicum/microbiologia , Cucumis/microbiologia , Cucurbita/microbiologia , Umidade , Água/fisiologia , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...