Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 39(1): 153-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21809096

RESUMO

An oleaginous and psychrotrophic strain (F38-3) of Sporobolomyces roseus Kluyver & van Niel was isolated from a salt marsh environment in Nova Scotia, Canada following a screening program to select for high producers of 18-carbon unsaturated fatty acids. Fatty acid production was characterised as a function of temperature at 20 g glucose L(-1), and optimal yields were obtained at 14°C, achieving 5.7 g dw biomass and 39.2% total fatty acids by dry weight, with 18:1, 18:2 and 18:3 all-cis fatty acids accounting for 49.4%, 14.3% and 6.7% of total fatty acids (TFA), respectively--the highest reported for this species. Production of 18:3 was inversely correlated to growth temperature, rising from 2% of TFA at 30°C to 8.9% at 6°C. Cultivation of isolate F38-3 on universally (13)C (U-(13)C) labelled glucose and subsequent transesterification and isolation of the fatty acid methyl esters (FAMEs) by preparative chromatography yielded pure, highly (13)C-enriched (>90%) 18:1, 18:2 and 18:3 all-cis FAMEs. The U-(13)C 18:1 FAME was catalytically converted to U-(13)C 18:1 trans-9 and purified to >99.5% purity. The U-(13)C 18:2 was converted by alkaline isomerisation into a 50/50 mixture of 18:2 cis-9, trans-11 and 18:2 trans-10, cis-12 isomers and purified to >95.0% purity. Overall, 10%, by weight, of labelled glucose fed to isolate F38-3 was recovered as fatty acid methyl esters and 7.5% as 18-carbon unsaturated fats, and the final isomerisation reactions resulted in yields of 80% or greater. The ultimate goal of the work is to develop methodologies to produce (13)C-labelled metabolic tracers as tools to study the metabolism of trans fats.


Assuntos
Basidiomycota/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos trans/biossíntese , Leveduras/metabolismo , Animais , Basidiomycota/isolamento & purificação , Isótopos de Carbono , Esterificação , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Ácidos Graxos Insaturados/química , Isomerismo , Nova Escócia , Leveduras/isolamento & purificação
2.
Cancer Prev Res (Phila) ; 3(3): 339-47, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179294

RESUMO

Ulcerative colitis is a dynamic, chronic inflammatory condition associated with an increased colon cancer risk. Inflammatory cell apoptosis is a key mechanism regulating ulcerative colitis. American ginseng (AG) is a putative antioxidant that can suppress hyperactive immune cells. We have recently shown that AG can prevent and treat mouse colitis. Because p53 levels are elevated in inflammatory cells in both mouse and human colitis, we tested the hypothesis that AG protects from colitis by driving inflammatory cell apoptosis through a p53 mechanism. We used isogenic p53(+/+) and p53(-/-) inflammatory cell lines as well as primary CD4(+)/CD25(-) effector T cells from p53(+/+) and p53(-/-) mice to show that AG drives apoptosis in a p53-dependent manner. Moreover, we used a dextran sulfate sodium (DSS) model of colitis in C57BL/6 p53(+/+) and p53(-/-) mice to test whether the protective effect of AG against colitis is p53 dependent. Data indicate that AG induces apoptosis in p53(+/+) but not in isogenic p53(-/-) cells in vitro. In vivo, C57BL/6 p53(+/+) mice are responsive to the protective effects of AG against DSS-induced colitis, whereas AG fails to protect from colitis in p53(-/-) mice. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of inflammatory cells within the colonic mesenteric lymph nodes is elevated in p53(+/+) mice consuming DSS + AG but not in p53(-/-) mice consuming DSS + AG. Results are consistent with our in vitro data and with the hypothesis that AG drives inflammatory cell apoptosis in vivo, providing a mechanism by which AG protects from colitis in this DSS mouse model.


Assuntos
Apoptose/efeitos dos fármacos , Colite/prevenção & controle , Inflamação/tratamento farmacológico , Panax , Fitoterapia , Proteína Supressora de Tumor p53/metabolismo , Animais , Sulfato de Dextrana/toxicidade , Humanos , Linfócitos/imunologia , Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Anal Bioanal Chem ; 389(1): 241-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17486321

RESUMO

Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to glycerol to yield a (13)C-labelled tridocosahexaenoin.


Assuntos
Produtos Biológicos/biossíntese , Produtos Biológicos/química , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/química , Saúde , Ciências da Nutrição , Produtos Biológicos/isolamento & purificação , Isótopos de Carbono/química , Chlorella/química , Ésteres/química , Ácidos Graxos Insaturados/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metilação , Estrutura Molecular , Padrões de Referência
4.
Anal Bioanal Chem ; 378(4): 969-76, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14647954

RESUMO

A novel group of toxins, the spirolides, has been investigated by several mass spectrometric (MS) methods to enable structure elucidation and metabolite identification. These macrocyclic compounds, produced by the dinoflagellate Alexandrium ostenfeldii, are a new class of marine phycotoxin with characteristic spiro-linked tricyclic ether and imine moieties. A crude phytoplankton extract has been shown to contain known spirolides and several unknown compounds, present at low yet significant levels. This study has focused on mass spectrometric characterization of the main component of this extract, 13-desmethyl spirolide C. Collision-induced dissociation (CID) spectra were collected on triple-quadrupole and quadrupole linear ion-trap instruments. High-resolution Fourier-transform ion cyclotron resonance MS data revealed the accurate masses of the protonated molecule and the product ions formed by infrared multiphoton dissociation. A fragmentation scheme for this toxin has been proposed to explain the formation of the collision-induced fragments. Charge-remote fragmentations dominate the CID spectra, because there is only one predominantly basic site in this molecule, and prove to be structurally informative. Extensive MS characterization of 13-desmethyl spirolide C will undoubtedly be useful in the characterization of known and unknown spirolides and other related compounds.


Assuntos
Lactonas/análise , Lactonas/química , Toxinas Marinhas/análise , Toxinas Marinhas/química , Fótons , Animais , Dinoflagellida/química , Raios Infravermelhos , Lactonas/metabolismo , Toxinas Marinhas/metabolismo , Espectrometria de Massas/métodos , Estrutura Molecular , Compostos de Espiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...