Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 30(17): 4298-306, 1991 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-2021622

RESUMO

In order to provide a more detailed understanding of human plasma fibronectin (PFn) solution structure, we examined the effects of pH and ionic strength (mu) variation on the sedimentation velocities (s20,w), fluorescence polarization-derived mean harmonic rotational relaxation times (rho H), far-ultraviolet (UV) circular dichroism (CD), and intrinsic tryptophan fluorescence of dimeric PFn and the monomeric 190/170-kDa PFn fragment. By comparing the biophysical properties of PFn with those of the 190/170-kDa PFn fragment, we could assess the relative importance of intrasubunit and intersubunit electrostatic forces in the stabilization of PFn structure. The rho H derived from isothermal polarization measurements on 1-pyrenebutyrate conjugated PFn decreased markedly (4.5----1.05-1.23 microseconds) when mu was increased from 0.2 to 1.2 or when the pH was adjusted from 7.4 to 2.0 or 11.0. We also noted a significant decrease in the PFn s20,w (13----8.5-9.6S) under these same solvent conditions. In contrast, the rho H and s20,w of the monomeric 190/170-kDa PFn fragment were relatively insensitive to changes in mu or pH. Computer simulations of the observed pH-dependent changes in the far-UV CD of PFn and the 190/170-kDa PFn fragment revealed only minor differences in protein secondary structure. We also observed only small bathochromic shifts (1-3 nm) in the emission maxima of PFn and 190/170-kDa PFn fragment tryptophan fluorescence under acidic or high mu conditions. These results suggest that minimal changes in PFn tertiary (i.e., intrasubunit) structure occur at pH 2, 11, or at mu = 1.2.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Fibronectinas/química , Dicroísmo Circular , Fibronectinas/sangue , Polarização de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Conformação Proteica , Espectrofotometria Ultravioleta , Triptofano
2.
Biochemistry ; 29(12): 3082-91, 1990 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-2337580

RESUMO

In order to more clearly define the structure of human plasma fibronectin (PFn) under physiologic buffer conditions, we determined the mean harmonic rotational relaxation times (rho H) of PFn and the thrombin-derived 190/170-kDa PFn fragment using steady-state fluorescence polarization. These measurements utilized the long lifetime emission (tau = 1.2 X 10(-7) S) exhibited by 1-pyrenebutyrate, which had been covalently attached to amino groups at random sites on the PFn subunit. Our data analysis assumed that two independent processes depolarize the fluorescence exhibited by the dansylcadaverine and 1-pyrenebutyrate conjugates of PFn: (A) rapid (rho H less than 10(-9) S) "thermally-activated" localized rotational motion of the protein side chains bearing the fluorescent probe [Weber, G. (1952) Biochem. J. 51, 145-154] and (B) slow (rho H approximately 10(-6) S) temperature-independent global rotational motion of the whole PFn molecule. Since only the rho H associated with the latter process is a true hydrodynamic parameter (i.e., sensitive to size and/or shape of the PFn molecule), we utilized isothermal polarization measurements to discriminate against the interfering signal arising from "thermally activated" probe rotation. The rho H (4.4 +/- 0.9 microseconds) derived from an experiment in which pyrene-PFn fluorescence polarization was monitored as a function of sucrose concentration at constant temperature is 7 (+/- 1.4) times longer than that predicted for an equivalent hydrated sphere. We propose that "thermally activated" probe rotation gives rise to the nearly 100-fold shorter PFn rho H values previously reported in the literature. Consequently, our data exclude all previous models which invoke segmental flexibility of the PFn peptide backbone. The simplest hydrodynamic model supported by our fluorescence data is an oblate ellipsoid with an axial ratio of 15:1. All prolate models can be unambiguously excluded by this result. We estimate that the disk-shaped PFn molecule has a diameter and thickness of 30 and 2 nm, respectively. Electron microscopy of negatively stained PFn specimens on carbon also showed PFn to have a compact rounded structure. The much faster rotational relaxation rate of the pyrene-190/170-kDa PFn fragment (rho H = 0.92 +/- 0.11 microseconds) compared to pyrene-PFn indicated that this monomeric PFn fragment, like native PFn, had an oblate shape under physiologic buffer conditions.


Assuntos
Fibronectinas , Trombina , Cromatografia de Afinidade , Dicroísmo Circular , Fibronectinas/sangue , Fibronectinas/ultraestrutura , Humanos , Matemática , Microscopia Eletrônica , Modelos Teóricos , Conformação Proteica , Espectrometria de Fluorescência/métodos , Termodinâmica , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...