Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4795, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862487

RESUMO

Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.


Assuntos
Leucócitos Mononucleares , Análise de Célula Única , Voo Espacial , Simulação de Ausência de Peso , Animais , Feminino , Humanos , Masculino , Camundongos , Imunidade Inata , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Quercetina/farmacologia , Transdução de Sinais , Linfócitos T/imunologia , Ausência de Peso
2.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352325

RESUMO

The "gut-brain axis" is emerging as an important target in Alzheimer's disease (AD). However, immunological mechanisms underlying this axis remain poorly understood. Using single-cell RNA sequencing of the colon immune compartment in the 5XFAD amyloid-ß (Aß) mouse model, we uncovered AD-associated changes in ribosomal activity, oxidative stress, and BCR/plasma cell activity. Strikingly, levels of colon CXCR4 + antibody secreting cells (ASCs) were significantly reduced. This corresponded with accumulating CXCR4 + B cells and gut-specific IgA + cells in the brain and dura mater, respectively. Consistently, a chemokine ligand for CXCR4, CXCL12, was expressed at higher levels in 5XFAD glial cells and in in silico analyzed human brain studies, supporting altered neuroimmune trafficking. An inulin prebiotic fiber diet attenuated AD markers including Aß plaques and overall frailty. These changes corresponded to an expansion of gut IgA + cells and rescued peripheral T regs levels. Our study points to a key glia-gut axis and potential targets against AD. Study Highlights: AD is associated with altered immune parameters in the gut of 5XFAD mice. 5 XFAD colon has reduced ASCs, including CXCR4 + cells with a migratory gene signature. 5XFAD brain gliosis includes increased CXCL12 expression. CXCR4 + B cells and gut-specific IgA + ASCs accumulate in the 5XFAD brain and/or dura mater. Inulin diet attenuates AD disease parameters while boosting IgA + cell and T reg levels.

3.
Mol Metab ; 74: 101755, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329949

RESUMO

BACKGROUND: Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW: This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS: The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.


Assuntos
Doenças Cardiovasculares , Inflamação , Humanos , Idoso , Anti-Inflamatórios
4.
J Immunol ; 211(3): 497-507, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294291

RESUMO

Cachexia is a major cause of death in cancer and leads to wasting of cardiac and skeletal muscle, as well as adipose tissue. Various cellular and soluble mediators have been postulated in driving cachexia; however, the specific mechanisms behind this muscle wasting remain poorly understood. In this study, we found polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to be critical for the development of cancer-associated cachexia. Significant expansion of PMN-MDSCs was observed in the cardiac and skeletal muscles of cachectic murine models. Importantly, the depletion of this cell subset, using depleting anti-Ly6G Abs, attenuated this cachectic phenotype. To elucidate the mechanistic involvement of PMN-MDSCs in cachexia, we examined major mediators, that is, IL-6, TNF-α, and arginase 1. By employing a PMN-MDSC-specific Cre-recombinase mouse model, we showed that PMN-MDSCs were not maintained by IL-6 signaling. In addition, PMN-MDSC-mediated cardiac and skeletal muscle loss was not abrogated by deficiency in TNF-α or arginase 1. Alternatively, we found PMN-MDSCs to be critical producers of activin A in cachexia, which was noticeably elevated in cachectic murine serum. Moreover, inhibition of the activin A signaling pathway completely protected against cardiac and skeletal muscle loss. Collectively, we demonstrate that PMN-MDSCs are active producers of activin A, which in turn induces cachectic muscle loss. Targeting this immune/hormonal axis will allow the development of novel therapeutic interventions for patients afflicted with this debilitating syndrome.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Arginase/metabolismo , Caquexia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Miocárdio , Músculo Esquelético/metabolismo
5.
J Immunol ; 211(1): 81-90, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154711

RESUMO

Recent thymic emigrant (RTE) cells are nascent T cells that continue their post-thymic maturation in the periphery and dominate T cell immune responses in early life and in adults having undergone lymphodepletion regimens. However, the events that govern their maturation and their functionality as they transition to mature naive T cells have not been clearly defined. Using RBPJind mice, we were able to identify different stages of RTE maturation and interrogate their immune function using a T cell transfer model of colitis. As CD45RBlo RTE cells mature, they transition through a CD45RBint immature naive T (INT) cell population that is more immunocompetent but shows a bias toward IL-17 production at the expense of IFN-γ. Additionally, the levels of IFN-γ and IL-17 produced in INT cells are highly dependent on whether Notch signals are received during INT cell maturation or during their effector function. IL-17 production by INT cells showed a total requirement for Notch signaling. Loss of Notch signaling at any stage of INT cells resulted in an impaired colitogenic effect of INT cells. RNA sequencing of INT cells that had matured in the absence of Notch signals showed a reduced inflammatory profile compared with Notch-responsive INT cells. Overall, we have elucidated a previously unknown INT cell stage, revealed its intrinsic bias toward IL-17 production, and demonstrated a role for Notch signaling in INT cell peripheral maturation and effector function in the context of a T cell transfer model of colitis.


Assuntos
Colite , Linfócitos T , Camundongos , Animais , Timo , Interleucina-17 , Transdução de Sinais
6.
Cell Mol Gastroenterol Hepatol ; 15(6): 1421-1442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36828279

RESUMO

BACKGROUND & AIMS: Fiber-rich foods promote health, but mechanisms by which they do so remain poorly defined. Screening fiber types, in mice, revealed psyllium had unique ability to ameliorate 2 chronic inflammatory states, namely, metabolic syndrome and colitis. We sought to determine the mechanism of action of the latter. METHODS: Mice were fed grain-based chow, which is naturally rich in fiber or compositionally defined diets enriched with semi-purified fibers. Mice were studied basally and in models of chemical-induced and T-cell transfer colitis. RESULTS: Relative to all diets tested, mice consuming psyllium-enriched compositionally defined diets were markedly protected against both dextran sulfate sodium- and T-cell transfer-induced colitis, as revealed by clinical-type, histopathologic, morphologic, and immunologic parameters. Such protection associated with stark basal changes in the gut microbiome but was independent of fermentation and, moreover, maintained in mice harboring a minimal microbiota (ie, Altered Schaedler Flora). Transcriptomic analysis revealed psyllium induced expression of genes mediating bile acids (BA) secretion, suggesting that psyllium's known ability to bind BA might contribute to its ability to prevent colitis. As expected, psyllium resulted in elevated level of fecal BA, reflecting their removal from enterohepatic circulation but, in stark contrast to the BA sequestrant cholestyramine, increased serum BA levels. Moreover, the use of BA mimetics that activate the farnesoid X receptor (FXR), as well as the use of FXR-knockout mice, suggested that activation of FXR plays a central role in psyllium's protection against colitis. CONCLUSIONS: Psyllium protects against colitis via altering BA metabolism resulting in activation of FXR, which suppresses pro-inflammatory signaling.


Assuntos
Colite , Psyllium , Camundongos , Animais , Psyllium/efeitos adversos , Ácidos e Sais Biliares , Promoção da Saúde , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/metabolismo , Inflamação , Camundongos Knockout
7.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38529494

RESUMO

A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.

8.
Nat Commun ; 12(1): 2598, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972511

RESUMO

The intestinal immune system is an important modulator of glucose homeostasis and obesity-associated insulin resistance. Dietary factors, the intestinal microbiota and their metabolites shape intestinal immunity during obesity. The intestinal immune system in turn affects processes such as intestinal permeability, immune cell trafficking, and intestinal hormone availability, impacting systemic insulin resistance. Understanding these pathways might identify mechanisms underlying treatments for insulin resistance, such as metformin and bariatric surgery, or aid in developing new therapies and vaccination approaches. Here, we highlight evolving concepts centered on intestinal immunity, diet, and the microbiota to provide a working model of obesity-related metabolic disease.


Assuntos
Microbioma Gastrointestinal/imunologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Animais , Linfócitos B/imunologia , Citocinas/metabolismo , Dietoterapia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Resistência à Insulina/imunologia , Doenças Metabólicas/microbiologia , Doenças Metabólicas/terapia , Obesidade/dietoterapia , Obesidade/imunologia , Obesidade/terapia , Linfócitos T/imunologia
9.
Hepatology ; 74(2): 704-722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33609303

RESUMO

BACKGROUND AND AIMS: Nonalcoholic steatohepatitis is rapidly becoming the leading cause of liver failure and indication for liver transplantation. Hepatic inflammation is a key feature of NASH but the immune pathways involved in this process are poorly understood. B lymphocytes are cells of the adaptive immune system that are critical regulators of immune responses. However, the role of B cells in the pathogenesis of NASH and the potential mechanisms leading to their activation in the liver are unclear. APPROACH AND RESULTS: In this study, we report that NASH livers accumulate B cells with elevated pro-inflammatory cytokine secretion and antigen-presentation ability. Single-cell and bulk RNA sequencing of intrahepatic B cells from mice with NASH unveiled a transcriptional landscape that reflects their pro-inflammatory function. Accordingly, B-cell deficiency ameliorated NASH progression, and adoptively transferring B cells from NASH livers recapitulates the disease. Mechanistically, B-cell activation during NASH involves signaling through the innate adaptor myeloid differentiation primary response protein 88 (MyD88) as B cell-specific deletion of MyD88 reduced hepatic T cell-mediated inflammation and fibrosis, but not steatosis. In addition, activation of intrahepatic B cells implicates B cell-receptor signaling, delineating a synergy between innate and adaptive mechanisms of antigen recognition. Furthermore, fecal microbiota transplantation of human NAFLD gut microbiotas into recipient mice promoted the progression of NASH by increasing the accumulation and activation of intrahepatic B cells, suggesting that gut microbial factors drive the pathogenic function of B cells during NASH. CONCLUSION: Our findings reveal that a gut microbiota-driven activation of intrahepatic B cells leads to hepatic inflammation and fibrosis during the progression of NASH through innate and adaptive immune mechanisms.


Assuntos
Linfócitos B/imunologia , Microbioma Gastrointestinal/imunologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Imunidade Adaptativa , Animais , Linfócitos B/metabolismo , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/microbiologia , Humanos , Imunidade Inata , Fígado/citologia , Fígado/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , RNA-Seq , Transdução de Sinais/imunologia , Análise de Célula Única
10.
Cell Rep ; 34(4): 108677, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503439

RESUMO

Pioneering studies from the early 1980s suggested that bacterial peptidoglycan-derived muramyl peptides (MPs) could exert either stimulatory or immunosuppressive functions depending, in part, on chronicity of exposure. However, this Janus-faced property of MPs remains largely unexplored. Here, we demonstrate the immunosuppressive potential of Nod1, the bacterial sensor of diaminopimelic acid (DAP)-containing MPs. Using a model of self-limiting peritonitis, we show that systemic Nod1 activation promotes an autophagy-dependent reprogramming of macrophages toward an alternative phenotype. Moreover, Nod1 stimulation induces the expansion of myeloid-derived suppressor cells (MDSCs) and maintains their immunosuppressive potential via arginase-1 activity. Supporting the role of MDSCs and tumor-associated macrophages in cancer, we demonstrate that myeloid-intrinsic Nod1 expression sustains intra-tumoral arginase-1 levels to foster an immunosuppressive and tumor-permissive microenvironment during colorectal cancer (CRC) development. Our findings support the notion that bacterial products, via Nod1 detection, modulate the immunosuppressive activity of myeloid cells and fuel tumor progression in CRC.


Assuntos
Neoplasias Colorretais/imunologia , Células Supressoras Mieloides/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Animais , Carcinogênese/imunologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Microambiente Tumoral/imunologia
11.
Cell Rep ; 34(2): 108609, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440149

RESUMO

Stiffness in the tissue microenvironment changes in most diseases and immunological conditions, but its direct influence on the immune system is poorly understood. Here, we show that static tension impacts immune cell function, maturation, and metabolism. Bone-marrow-derived and/or splenic dendritic cells (DCs) grown in vitro at physiological resting stiffness have reduced proliferation, activation, and cytokine production compared with cells grown under higher stiffness, mimicking fibro-inflammatory disease. Consistently, DCs grown under higher stiffness show increased activation and flux of major glucose metabolic pathways. In DC models of autoimmune diabetes and tumor immunotherapy, tension primes DCs to elicit an adaptive immune response. Mechanistic workup identifies the Hippo-signaling molecule, TAZ, as well as Ca2+-related ion channels, including potentially PIEZO1, as important effectors impacting DC metabolism and function under tension. Tension also directs the phenotypes of monocyte-derived DCs in humans. Thus, mechanical stiffness is a critical environmental cue of DCs and innate immunity.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata/imunologia , Imunoterapia/métodos , Rigidez Vascular/imunologia , Humanos , Transdução de Sinais
12.
Nat Commun ; 10(1): 3650, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409776

RESUMO

The intestinal immune system is emerging as an important contributor to obesity-related insulin resistance, but the role of intestinal B cells in this context is unclear. Here, we show that high fat diet (HFD) feeding alters intestinal IgA+ immune cells and that IgA is a critical immune regulator of glucose homeostasis. Obese mice have fewer IgA+ immune cells and less secretory IgA and IgA-promoting immune mediators. HFD-fed IgA-deficient mice have dysfunctional glucose metabolism, a phenotype that can be recapitulated by adoptive transfer of intestinal-associated pan-B cells. Mechanistically, IgA is a crucial link that controls intestinal and adipose tissue inflammation, intestinal permeability, microbial encroachment and the composition of the intestinal microbiome during HFD. Current glucose-lowering therapies, including metformin, affect intestinal-related IgA+ B cell populations in mice, while bariatric surgery regimen alters the level of fecal secretory IgA in humans. These findings identify intestinal IgA+ immune cells as mucosal mediators of whole-body glucose regulation in diet-induced metabolic disease.


Assuntos
Imunoglobulina A/imunologia , Resistência à Insulina , Obesidade/imunologia , Tecido Adiposo/imunologia , Animais , Linfócitos B/imunologia , Estudos de Coortes , Fezes/microbiologia , Microbioma Gastrointestinal , Glucose/metabolismo , Humanos , Intestinos/imunologia , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/microbiologia
13.
Cell Metab ; 29(4): 787-789, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943389

RESUMO

Glucagon-like peptide-1 (GLP-1) is an enteroendocrine hormone that controls insulin secretion, intestinal function, and food intake. Recently in Nature, He et al. (2019) reported that gut intraepithelial T cells regulate GLP-1 bioavailability by capturing it on GLP-1 receptors and impacting L-cell numbers. This study delineates a novel endocrine-immune axis through which intestinal immune cells regulate whole-body metabolism.


Assuntos
Doenças Cardiovasculares , Linfócitos Intraepiteliais , Células Enteroendócrinas , Peptídeo 1 Semelhante ao Glucagon , Humanos , Intestinos , Masculino
14.
Int J Obes (Lond) ; 43(12): 2407-2421, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30944419

RESUMO

BACKGROUND/OBJECTIVES: Low-grade chronic inflammation in visceral adipose tissue and the intestines are important drivers of obesity associated insulin resistance. Bioactive compounds derived from plants are an important source of potential novel therapies for the treatment of chronic diseases. In search for new immune based treatments of obesity associated insulin resistance, we screened for tissue relevant anti-inflammatory properties in 20 plant-based extracts. METHODS: We screened 20 plant-based extracts to assess for preferential production of IL-10 compared to TNFα, specifically targetting metabolic tissues, including the visceral adipose tissue. We assessed the therapeutic potential of the strongest anti-inflammatory compound, indigo, in the C57BL/6J diet-induced obesity mouse model with supplementation for up to 16 weeks by measuring changes in body weight, glucose and insulin tolerance, and gut barrier function. We also utilized flow cytometry, quantitative PCR, enzyme-linked immunosorbent assay (ELISA), and histology to measure changes to immune cells populations and cytokine profiles in the intestine, visceral adipose tissue (VAT), and liver. 16SrRNA sequencing was performed to examine gut microbial differences induced by indigo supplementation. RESULTS: We identifed indigo, an aryl hydrocarbon receptor (AhR) ligand agonist, as a potent inducer of IL-10 and IL-22, which protects against high-fat diet (HFD)-induced insulin resistance and fatty liver disease in the diet-induced obesity model. Therapeutic actions were mechanistically linked to decreased inflammatory immune cell tone in the intestine, VAT and liver. Specifically, indigo increased Lactobacillus bacteria and elicited IL-22 production in the gut, which improved intestinal barrier permeability and reduced endotoxemia. These changes were associated with increased IL-10 production by immune cells residing in liver and VAT. CONCLUSIONS: Indigo is a naturally occurring AhR ligand with anti-inflammatory properties that effectively protects against HFD-induced glucose dysregulation. Compounds derived from indigo or those with similar properties could represent novel therapies for diseases associated with obesity-related metabolic tissue inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Índigo Carmim/farmacologia , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química
15.
Cell Metab ; 28(6): 922-934.e4, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30174303

RESUMO

T cells represent a critical effector of cell-mediated immunity. Activated T cells engage in metabolic reprogramming during effector differentiation to accommodate dynamic changes in energy demands. Here, we show that the hormone, insulin, and downstream signaling through its insulin receptor shape adaptive immune function through modulating T cell metabolism. T cells lacking insulin receptor expression (LckCre+ Insrfl/fl) show reduced antigen-specific proliferation and compromised production of pro-inflammatory cytokines. In vivo, T cell-specific insulin receptor deficiency reduces T cell-driven colonic inflammation. In a model of severe influenza infection with A/PR8 (H1N1), lack of insulin receptor on T cells curtails antigen-specific immunity to influenza viral antigens. Mechanistically, insulin receptor signaling reinforces a metabolic program that supports T cell nutrient uptake and associated glycolytic and respiratory capacities. These data highlight insulin receptor signaling as an important node integrating immunometabolic pathways to drive optimal T cell effector function in health and disease.


Assuntos
Antígenos CD/imunologia , Imunidade Celular/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Ativação Linfocitária/imunologia , Receptor de Insulina/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD/genética , Citocinas/imunologia , Citocinas/metabolismo , Glicólise/imunologia , Humanos , Inflamação/imunologia , Inflamação/virologia , Insulina/metabolismo , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae , Receptor de Insulina/genética , Transdução de Sinais , Baço , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
Intern Med ; 57(7): 1049-1050, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29225274
17.
Sci Immunol ; 2(10)2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28567448

RESUMO

Obesity-related insulin resistance is driven by low-grade chronic inflammation of metabolic tissues. In the liver, non-alcoholic fatty liver disease (NAFLD) is associated with hepatic insulin resistance and systemic glucose dysregulation. However, the immunological factors supporting these processes are poorly understood. We found that the liver accumulates pathogenic CD8+ T cell subsets which control hepatic insulin sensitivity and gluconeogenesis during diet-induced obesity in mice. In a cohort of human patients, CD8+ T cells represent a dominant intrahepatic immune cell population which links to glucose dysregulation. Accumulation and activation of these cells are largely supported by type I interferon (IFN-I) responses in the liver. Livers from obese mice upregulate critical interferon regulatory factors (IRFs), interferon stimulatory genes (ISGs), and IFNα protein, while IFNαR1-/- mice, or CD8-specific IFNαR1-/- chimeric mice are protected from disease. IFNαR1 inhibitors improve metabolic parameters in mice, while CD8+ T cells and IFN-I responses correlate with NAFLD activity in human patients. Thus, IFN-I responses represent a central immunological axis that governs intrahepatic T cell pathogenicity during metabolic disease.

18.
J Clin Invest ; 127(1): 33-42, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045403

RESUMO

Obesity and diabetes are associated with increased chronic low-grade inflammation and elevated plasma glucose levels. Although inflammation in the fat and liver are established features of obesity-associated insulin resistance, the intestine is emerging as a new site for immunologic changes that affect whole-body metabolism. Specifically, microbial and dietary factors incurred by diet-induced obesity influence underlying innate and adaptive responses of the intestinal immune system. These responses affect the maintenance of the intestinal barrier, systemic inflammation, and glucose metabolism. In this Review we propose that an understanding of the changes to the intestinal immune system, and how these changes influence systemic immunity and glucose metabolism in a whole-body integrative and a neuronal-dependent network, will unveil novel intestinal pathologic and therapeutic targets for diabetes and obesity.


Assuntos
Imunidade Adaptativa , Diabetes Mellitus/imunologia , Imunidade Inata , Resistência à Insulina/imunologia , Intestinos/imunologia , Obesidade/imunologia , Animais , Diabetes Mellitus/patologia , Glucose/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Intestinos/patologia , Rede Nervosa/imunologia , Rede Nervosa/patologia , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...