Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980064

RESUMO

Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.

2.
J Med Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987863

RESUMO

Human telomerase reverse transcriptase (hTERT) may have noncanonical functions in transcriptional regulation and metabolic reprogramming in cancer cells, but it is a challenging target. We thus developed small-molecule ligands targeting hTERT promoter G-quadruplex DNA structures (hTERT G4) to downregulate hTERT expression. Ligand 5 showed high affinity toward hTERT G4 (Kd = 1.1 µM) and potent activity against triple-negative breast cancer cells (MDA-MB-231, IC50 = 1 µM). In cell-based assays, 5 not only exerts markedly inhibitory activity on classical telomere functions including decreased telomerase activity, shortened telomere length, and cellular senescence but also induces DNA damage, acute cellular senescence, and apoptosis. This study reveals that hTERT G4-targeting ligand may cause mitochondrial dysfunction, disrupt iron metabolism and activate ferroptosis in cancer cells. The in vivo antitumor efficacy of 5 was also evaluated in an MDA-MB-231 xenograft mouse model and approximately 78.7% tumor weight reduction was achieved. No observable toxicity against the major organs was observed.

3.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38624086

RESUMO

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Assuntos
Antineoplásicos , Neoplasias Colorretais , Quadruplex G , Mitocôndrias , Humanos , Quadruplex G/efeitos dos fármacos , Ligantes , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto , Células HCT116 , DNA Mitocondrial/metabolismo
4.
Ann Hum Genet ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624263

RESUMO

To investigate the association of attention-deficit/hyperactivity disorder (ADHD) with the 48-base pair (bp) variable number of tandem repeats (VNTR) in exon 3 of the dopamine receptor D4 (DRD4) gene, we genotyped 240 ADHD patients and their parents from Hong Kong. The 4R allele was most common, followed by 2R. We examined association between the 2R allele (relative to 4R) and ADHD by Transmission Disequilibrium Test (TDT). The odds ratio (OR) (95% confidence interval) was 0.90 (0.64-1.3). The p-value was 0.6. Examining subgroups revealed nominally significant association of 2R with inattentive ADHD: OR = 0.33 (0.12-0.92) and p = 0.03. Because our study used TDT analysis, we meta-analyzed the association of 2R with ADHD in Asians (1329 patient alleles), revealing results similar to ours: OR = 0.97 (0.80-1.2) and p = 0.8. To examine the association of 2R with inattentive ADHD, we meta-analyzed all studies (regardless of analysis type or ethnicity, in order to increase statistical power): 702 patient alleles, 1420 control alleles, OR = 0.81 (0.57-1.1) and p = 0.2. Overall, there is no evidence of association between ADHD and the 2R allele, but the suggestive association with the inattentive type warrants further investigation.

5.
Bioorg Chem ; 146: 107318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579613

RESUMO

Twenty-seven rosmarinic acid derivatives were synthesized, among which compound RA-N8 exhibited the most potent antibacterial ability. The minimum inhibition concentration of RA-N8 against both S. aureus (ATCC 29213) and MRSA (ATCC BAA41 and ATCC 43300) was found to be 6 µg/mL, and RA-N8 killed E. coli (ATCC 25922) at 3 µg/mL in the presence of polymyxin B nonapeptide (PMBN) which increased the permeability of E. coli. RA-N8 exhibited a weak hemolytic effect at the minimum inhibitory concentration. SYTOX Green assay, SEM, and LIVE/DEAD fluorescence staining assay proved that the mode of action of RA-N8 is targeting bacterial cell membranes. Furthermore, no resistance in wildtype S. aureus developed after incubation with RA-N8 for 20 passages. Cytotoxicity studies further demonstrated that RA-N8 is non-toxic to the human normal cell line (HFF1). RA-N8 also exerted potent inhibitory ability against biofilm formation of S. aureus and even collapsed the shaped biofilm.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/química , Staphylococcus aureus , Ácido Rosmarínico , Escherichia coli , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Biofilmes
6.
ACS Sens ; 9(3): 1545-1554, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450702

RESUMO

rRNAs are prevalent in living organisms. They are produced in nucleolus and mitochondria and play essential cellular functions. In addition to the primary biofunction in protein synthesis, rRNAs have been recognized as the emerging signaling molecule and drug target for studies on nucleolus morphology, mitochondrial autophagy, and tumor cell malignancy. Currently, only a few rRNA-selective probes have been developed, and most of them encounter the drawbacks of low water solubility, poor nuclear membrane permeability, short emission wavelength, low stability against photobleaching, and high cytotoxicity. These unfavorable properties of rRNA probes limit their potential applications. In the present study, we reported a new rRNA-selective and near-infrared fluorescent turn-on probe, 4MPS-TO, capable of tracking rRNA in live human cancer cells. The real-time monitoring performance in nucleolus morphology and mitochondrial autophagy is demonstrated in HeLa cells. The probe shows great application potential for being used as a rRNA-selective, sensitive, and photostable imaging tool in chemical biology study and drug screening.


Assuntos
Mitofagia , Neoplasias , Humanos , Células HeLa , Corantes Fluorescentes/química , Imagem Óptica/métodos , Autofagia
7.
Bioorg Chem ; 144: 107163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306825

RESUMO

The development of effective antibacterial drugs to combat bacterial infections, particularly the biofilm-related infections, remains a challenge. There are two important features of bacterial biofilms, which are well-known critical factors causing biofilms hard-to-treat in clinical, including the dense and impermeable extracellular polymeric substances (EPS) and the metabolically repressed dormant and persistent bacterial population embedded. These characteristics largely increase the difficulty for regular antibiotic treatment due to insufficient penetration into EPS. In addition, the dormant bacteria are insensitive to the growth-inhibiting mechanism of traditional antibiotics. Herein, we explore the potential of a series of new oligopyridinium-based oligomers bearing a multi-biomacromolecule targeting function as the potent bacterial biofilm eradication agent. These oligomers were rationally designed to be "charge-on-backbone" that can offer a special alternating amphiphilicity. This novel and unique feature endows high affinity to bacterial membrane lipids, DNAs as well as proteins. Such a broad multi-targeting nature of molecules not only enables its penetration into EPS, but also plays vital roles in the bactericidal mechanism of action that is highly effective against dormant and persistent bacteria. Our in vitro, ex vivo, and in vivo studies demonstrated that OPc3, one of the most effective derivatives, was able to offer excellent antibacterial potency against a variety of bacteria and effectively eliminate biofilms in zebrafish models and mouse wound biofilm infection models.


Assuntos
Infecções Bacterianas , Peixe-Zebra , Animais , Camundongos , Biofilmes , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
8.
Chem Commun (Camb) ; 60(29): 3910-3913, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38333927

RESUMO

A smart and heavy-atom-free photoinactive nano-photosensitizer capable of being activated by cysteine at the tumor site to generate highly photoactive nano-photosensitizers that show strong NIR absorption and fluorescence with a good singlet oxygen quantum yield (16.8%) for photodynamic therapy is reported.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Cisteína , Oxigênio Singlete , Neoplasias/tratamento farmacológico
9.
Mar Pollut Bull ; 199: 115964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194823

RESUMO

Diagnosis of eutrophication requires evidence of disturbance to the balance of organisms. We describe a tool, the Plankton Community Integrity Index (PCII), derived from the Plankton Index (PI) for tracking change in the seasonal patterns of abundance of diatom and dinoflagellate lifeforms when plotted in state space. The tool uses a nutrient-minimum reference period to interpret PCII values as status indicators, with values close to 1 indicating "High" status and 0.6 a Biological Water Quality Criterion (BioWQC) target set at the "Fair"/"Good" status boundary. It has been applied to Hong Kong marine waters, using data from monthly samples from 1995 through 2021. A preliminary analysis, required for the PI method, confirmed monsoonal seasonality in the diatom lifeform. In 5 of the 9 water bodies examined, PCII time series correlated with those of Total Inorganic Nitrogen (TIN). Since 2020, all Water Control Zones met the operationally defined BioWQC target.


Assuntos
Diatomáceas , Fitoplâncton , Hong Kong , Eutrofização , Qualidade da Água
10.
Autism ; 28(4): 945-958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37522637

RESUMO

TRIAL REGISTRATION: This study was registered with the German Clinical Trials Register - Deutschen Register Klinischer Studien (DRKS) on 23 December 2018. The Trial Registration Number (TRN) is DRKS00016506. LAY ABSTRACT: The Transporters App is an intervention programme with 15 animated episodes that teach emotion recognition skills to autistic children between 4 and 6 years of age. Each episode contains a story depicting social interactions between characters in the form of a vehicle, with human faces grafted on to each of them. Each episode teaches a specific emotion in a story context. Autistic children watched at least three episodes at home for about 15 min daily for a month, with parental guidance. Its automated, home-based format is cost-saving and readily accessible. This study translated The Transporters to a Cantonese-Chinese version. Results showed a significant improvement in emotion recognition following viewing The Transporters in a group of Hong Kong Chinese autistic children, between 4 and 6 years of age, with and without attention-deficit/hyperactivity disorder (n = 48) relative to a control group (n = 24). A non-autistic group (n = 23) showed that the autistic children scored lower in emotion recognition pre-intervention. Post-intervention, the autistic children had improved in emotion recognition to the level of the non-autistic children. The autistic children in the intervention groups also generalized their learning to novel situations/characters not taught within The Transporters. There was no dosage effect, with the standard recommended number of episodes viewed being sufficient to achieve significant improvement. This study confirms the effectiveness of The Transporters for Chinese autistic children and contributes to the literature/practice by expanding the range of applicability of The Transporters to autistic children with attention-deficit/hyperactivity disorder, which is important given the high rate of co-occurrence between autism and attention-deficit/hyperactivity disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Aplicativos Móveis , Criança , Humanos , Transtorno Autístico/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Hong Kong , Transtorno do Espectro Autista/psicologia , Emoções
11.
Am J Mens Health ; 17(6): 15579883231205521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093710

RESUMO

This study aimed to investigate the prevalence of lower urinary tract symptoms (LUTS) in older men (N= 3056) with benign prostatic hyperplasia (BPH) and its effects on their sexual function and mental health. Descriptive, correlation, and regression analyses were used to explore the relationships between prostate and lower urinary tract health and psychological well-being. Better prostate and lower urinary tract health positively affected psychological well-being, and sexual function also had a positive influence. LUTS have an adverse impact on sexual function and mental health. Early intervention is crucial for mitigating the negative impact of LUTS on the quality of life in older men. Addressing prostate and lower urinary tract health issues through appropriate interventions may improve psychological well-being. Health care professionals must consider the adverse effects of BPH and LUTS on sexual function and mental health, and implement interventions to enhance the overall quality of life in older men.


Assuntos
Sintomas do Trato Urinário Inferior , Hiperplasia Prostática , Masculino , Humanos , Idoso , Hiperplasia Prostática/complicações , Bem-Estar Psicológico , Qualidade de Vida , Próstata , Sintomas do Trato Urinário Inferior/etiologia
12.
Pathogens ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38003764

RESUMO

Catabolite control protein A (CcpA), an important global regulatory protein, is extensively found in S. aureus. Many studies have reported that CcpA plays a pivotal role in regulating the tricarboxylic acid cycle and pathogenicity. Moreover, the CcpA-knockout Staphylococcus aureus (S. aureus) in diabetic mice, compared with the wild-type, showed a reduced colonization rate in the tissues and organs and decreased inflammatory factor expression. However, the effect of CcpA-knockout S. aureus on the host's energy metabolism in a high-glucose environment and its mechanism of action remain unclear. S. aureus, a common and major human pathogen, is increasingly found in patients with obesity and diabetes, as recent clinical data reveal. To address this issue, we generated CcpA-knockout S. aureus strains with different genetic backgrounds to conduct in-depth investigations. In vitro experiments with high-glucose-treated cells and an in vivo model study with type 1 diabetic mice were used to evaluate the unknown effect of CcpA-knockout strains on both the glucose and lipid metabolism phenotypes of the host. We found that the strains caused an abnormal metabolic phenotype in type 1 diabetic mice, particularly in reducing random and fasting blood glucose and increasing triglyceride and fatty acid contents in the serum. In a high-glucose environment, CcpA-knockout S. aureus may activate the hepatic STAT5/PDK4 pathway and affect pyruvate utilization. An abnormal metabolic phenotype was thus observed in diabetic mice. Our findings provide a better understanding of the molecular mechanism of glucose and lipid metabolism disorders in diabetic patients infected with S. aureus.

13.
Phytochemistry ; 216: 113887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806467

RESUMO

Four previously undescribed hirsutinolide-type sesquiterpenoids, cyanolides A-D (1-4), along with twelve known analogues (5-16), were isolated from the aerial parts of Cyanthillium cinereum. Their structures were determined by comprehensive analysis of NMR, HRESIMS, and ECD spectra. Compound 1 is a rarely occurring hirsutinolide-type sesquiterpenoid with 1,4-ether ring ruptured and containing a chlorine atom, and compounds 13-16 were reported from this plant for the first time. All compounds were tested for their inhibiting effects on prostate cancer cells. As a result, compounds 1, 3, and 8-14 exhibited significant anti-prostate cancer activity against PC-3 and LNCaP cells with IC50 values ranging from 2.2 ± 0.4 to 8.5 ± 0.7 µM and 3.0 ± 0.7 to 10.5 ± 1.1 µM, respectively. The preliminary structure-activity relationship was discussed. Further investigation showed that compound 1 induced apoptosis in PC-3 cells.


Assuntos
Asteraceae , Neoplasias da Próstata , Sesquiterpenos , Masculino , Humanos , Estrutura Molecular , Asteraceae/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Relação Estrutura-Atividade , Neoplasias da Próstata/tratamento farmacológico
14.
J Am Chem Soc ; 145(42): 23372-23384, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37838963

RESUMO

Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bactérias , Biologia , Testes de Sensibilidade Microbiana
15.
ChemMedChem ; 18(19): e202300271, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37649155

RESUMO

RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.


Assuntos
RNA , Bibliotecas de Moléculas Pequenas , Humanos , RNA/metabolismo , Ligantes , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , RNA Mensageiro , Proteínas
16.
ACS Appl Mater Interfaces ; 15(16): 20458-20473, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039625

RESUMO

Bacterial biofilms are major causes of persistent and recurrent infections and implant failures. Biofilms are formable by most clinically important pathogens worldwide, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, causing recalcitrance to standard antibiotic therapy or anti-biofilm strategies due to amphiphilic impermeable extracellular polymeric substances (EPS) and the presence of resistant and persistent bacteria within the biofilm matrix. Herein, we report our design of an oligoamidine-based amphiphilic "nano-sword" with high structural compacity and rigidity. Its rigid, amphiphilic structure ensures effective penetration into EPS, and the membrane-DNA dual-targeting mechanism exerts strong bactericidal effect on the dormant bacterial persisters within biofilms. The potency of this oligoamidine is shown in two distinct modes of application: it may be used as a coating agent for polycaprolactone to fully inhibit surface biofilm growth in an implant-site mimicking micro-environment; meanwhile, it cures model mice of biofilm infections in various ex vivo and in vivo studies.


Assuntos
Biofilmes , Infecções Estafilocócicas , Camundongos , Animais , Matriz Extracelular de Substâncias Poliméricas , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Pseudomonas aeruginosa
17.
Adv Healthc Mater ; 12(24): e2300431, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102624

RESUMO

The design and synthesis of multifunctional chitosan hydrogels based on polymerized ionic liquid and a near-infrared (NIR) fluorescent probe (PIL-CS) is a promising strategy, which not only prevents the transition from acute to chronic wounds, but also provides prompt measures regarding microenvironmental alterations in chronic wounds. PIL-CS hydrogel can real-time visualize wound pH through in vivo NIR fluorescent imaging and also feature the pH-responsive sustained drug release, such as antioxidant, to eliminate reactive oxygen species (ROS) and to boost diabetic wound healing. PIL-CS hydrogel is specific, sensitive, stable, and reversible in response to pH changes at the wound site. It, therefore, enables real-time monitoring for a dynamic pH change in the microenvironment of irregular wounds. PIL-CS hydrogel is also designed to possess many merits including high water containment and swelling rate, good biocompatibility, electrical conductivity, antifreeze, tissue adhesion, hemostatic performance, and efficient antibacterial activity against MRSA. In vivo studies showed that PIL-CS hydrogel provided fast diabetic wound healing support, promoted vascular endothelial growth factor (VEGF) production, and reduced ROS and tumor necrosis factor (TNF-α) generation. The results support that the hydrogels coupled with NIR fluorescent probes can be an excellent diabetic wound dressing for enhancing and real-time monitoring skin restoration and regeneration.


Assuntos
Diabetes Mellitus , Hidrogéis , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio , Fator A de Crescimento do Endotélio Vascular , Bandagens , Cicatrização , Corantes Fluorescentes , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio
18.
Insects ; 14(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37103214

RESUMO

Two series of novel sophoridine derivatives were designed, synthesized, and evaluated for their anti-mosquito activity. SOP-2g, SOP-2q, and SOP-2r exhibited potential larvicidal activity against Aedes albopictus larva with LC50 values of 330.98, 430.53, and 411.09 ppm, respectively. Analysis of structure-activity relationships indicated that the oxime ester group was beneficial for improving the larvicidal biological activity, whereas the long-chain aliphatic group and fused-ring group were introduced. Furthermore, the larvicidal mechanism was also investigated based on the inhibition assay of acetylcholinesterase (AChE) and the morphological observation of dead larva treated with derivatives. Results indicated that the AChE inhibitory activity of the preferred three derivatives were 63.16%, 46.67%, and 35.11%, respectively, at 250 ppm concentration. Additionally, morphological evidence demonstrated that SOP-2q and SOP-2r induced changes in the larva's intestinal cavity, caudal gill, and tail, thereby displaying larvicidal action against Ae. albopictus together with AChE inhibition. Therefore, this study implied that sophoridine and its novel derivatives could be used to control the population of mosquito larva, which may also be effective alkaloids to reduce the mosquito population density.

19.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049799

RESUMO

A large number of studies have shown that matrine (MA) possesses various pharmacological activities and is one of the few natural, plant-derived pesticides with the highest prospects for promotion and application. Fifty-eight MA derivatives were prepared, including 10 intermediates and 48 target compounds in 3 series, to develop novel mosquitocidal agents. Compounds 4b, 4e, 4f, 4m, 4n, 6e, 6k, 6m, and 6o showed good larvicidal activity against Aedes albopictus, which is both a highly aggressive mosquito and an important viral vector that can transmit a wide range of pathogens. Dipping methods and a bottle bioassay were used for insecticidal activity evaluation. The LC50 values of 4e, 4m, and 6m reached 147.65, 140.08, and 205.79 µg/mL, respectively, whereas the LC50 value of MA was 659.34 µg/mL. Structure-activity relationship analysis demonstrated that larvicidal activity could be improved by the unsaturated heterocyclic groups introduced into the carboxyl group after opening the D ring. The MA derivatives with oxidized N-1 lost their mosquitocidal activities, indicating that the bareness of N-1 is crucial to maintain their anti-mosquito activity. However, the activity was not greatly influenced by introducing a cyan group at C-6 or a benzene sulfonyl group at N-16. Additionally, compounds 4e and 4m exhibited good inhibitory activities against acetylcholinesterase with inhibitory rates of 59.12% and 54.30%, respectively, at a concentration of 250 µg/mL, whereas the inhibitory rate of MA was 9.88%. Therefore, the structural modification and mosquitocidal activity of MA and its derivatives obtained here pave the way for those seeking strong mosquitocidal agents of plant origin.


Assuntos
Aedes , Inseticidas , Animais , Matrinas , Larva , Acetilcolinesterase , Mosquitos Vetores , Inseticidas/farmacologia , Inseticidas/química
20.
Chemistry ; 29(34): e202300705, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971407

RESUMO

The development of site-specific, target-selective and biocompatible small molecule ligands as a fluorescent tool for real-time study of cellular functions of RNA G-quadruplexes (G4s), which are associated with human cancers, is of significance in cancer biology. We report a fluorescent ligand that is a cytoplasm-specific and RNA G4-selective fluorescent biosensor in live HeLa cells. The in vitro results show that the ligand is highly selective targeting RNA G4s including VEGF, NRAS, BCL2 and TERRA. These G4s are recognized as human cancer hallmarks. Moreover, intracellular competition studies with BRACO19 and PDS, and the colocalization study with G4-specific antibody (BG4) in HeLa cells may support that the ligand selectively binds to G4s in cellulo. Furthermore, the ligand was demonstrated for the first time in the visualization and monitoring of dynamic resolving process of RNA G4s by the overexpressed RFP-tagged DHX36 helicase in live HeLa cells.


Assuntos
Quadruplex G , Neoplasias , Humanos , Células HeLa , Ligantes , RNA/metabolismo , Citoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...