Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398951

RESUMO

Functional electrical stimulation (FES) aims to improve the gait pattern in cases of weak foot dorsiflexion (foot lifter weakness) and, therefore, increase the liveability of people suffering from chronic diseases of the central nervous system, e.g., multiple sclerosis. One important component of FES is the detection of the knee angle in order to enable the situational triggering of dorsiflexion in the right gait phase by electrical impulses. This paper presents an alternative approach to sensors for motion capture in the form of weft-knitted strain sensors. The use of textile-based strain sensors instead of conventional strain gauges offers the major advantage of direct integration during the knitting process and therefore a very discreet integration into garments. This in turn contributes to the fact that the FES system can be implemented in the form of functional leggings that are suitable for inconspicuous daily use without disturbing the wearer unnecessarily. Different designs of the weft-knitted strain sensor and the influence on its measurement behavior were investigated. The designs differed in terms of the integration direction of the sensor (wale- or course-wise) and the width of the sensor (number of loops) in a weft-knitted textile structure.

2.
Polymers (Basel) ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959889

RESUMO

For signal transmission and sensing in stretchable structures for human motion monitoring or proprioception of soft robots, textiles with electronically conductive yarns are a promising option. Many recent publications employ silver-plated yarns in knits, braids, wovens for strain or pressure sensing purposes as well as heating fabrics or twisted string actuators. Silver-plated yarns are available in a wide range of base materials, yarn counts and twists. These structural properties significantly influence the electrical and electromechanical behavior of such yarns. However, until now little research has been carried out on the yarns themselves. To close this research gap, several variations of a single yarn type are electromechanically characterized. Additionally, tensile tests with synchronous resistance measurements are performed. From these measurements, sensor metrics are derived and calculated to compare the different variants quantitatively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...