Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 12(42): 27082-27093, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276039

RESUMO

High-performance porous 3D graphene-based supercapacitors are one of the most promising and challenging directions for future energy technologies. Microporous graphene has been synthesized by the pyrolysis method. The fabricated lightweight graphene with a few layers (FLG) has an ultra-high surface area of 2266 m2 g-1 along with various-sized micropores. The defect-induced morphology and pore size distribution of the fabricated graphene are examined, and the results show that the micropores vary from 0.85 to 1.9 nm and the 1.02 nm pores contribute 30% of the total surface area. The electrochemical behaviour of the electrode fabricated using this graphene has been studied with various concentrations of the KOH electrolyte. The highest specific capacitance of the graphene electrode of 540 F g-1 (close to the theoretical value, ∼550 F g-1) can be achieved by using the 1 M KOH electrolyte. This high specific capacitance contribution involves the counter ion adsorption, co-ion desorption, and ion permutation mechanisms. The formation of a Helmholtz layer, as well as the diffusion of the electrolyte ions, confirms this phenomenon. The symmetrical solid-state supercapacitor fabricated with the graphene electrodes and PVA-KOH gel as the electrolyte exhibits excellent energy and power densities of 18 W h kg-1 and 10.2 kW kg-1, respectively. This supercapacitor also shows a superior 100% coulombic efficiency after 6000 cycles.

3.
Polymers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477798

RESUMO

The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE-INF composites were explained using the Avrami model. The effect of cellulose nanofillers on tuning the physiochemical properties of the nanocomposite was also explored in this work. The increase in mechanical properties was due to the uniform dispersion of fillers in the PE. The investigation on viscoelastic properties confirmed good filler-matrix interactions, facilitating the stress transfer.

4.
RSC Adv ; 11(43): 26892-26907, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35479971

RESUMO

The fabrication with high energy density and superior electrical/electrochemical properties of hierarchical porous 3D cross-linked graphene-based supercapacitors is one of the most urgent challenges for developing high-power energy supplies. We facilely synthesized a simple, eco-friendly, cost-effective heteroatoms (nitrogen, phosphorus, and fluorine) co-doped graphene oxide (NPFG) reduced by hydrothermal functionalization and freeze-drying approach with high specific surface areas and hierarchical pore structures. The effect of different heteroatoms doping on the energy storage performance of the synthesized reduced graphene oxide is investigated extensively. The electrochemical analysis performed in a three-electrode system via cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), and electrochemical impedance spectroscopy (EIS) demonstrates that the nitrogen, phosphorous, and fluorine co-doped graphene (NPFG-0.3) synthesized with the optimum amount of pentafluoropyridine and phytic acid (PA) exhibits a notably enhanced specific capacitance (319 F g-1 at 0.5 A g-1), good rate capability, short relaxation time constant (τ = 28.4 ms), and higher diffusion coefficient of electrolytic cations (Dk+ = 8.8261 × 10-9 cm2 s-1) in 6 M KOH aqueous electrolyte. The density functional theory (DFT) calculation result indicates that the N, F, and P atomic replacement within the rGO model could increase the energy value (G T) from -673.79 eV to -643.26 eV, demonstrating how the atomic level energy could improve the electrochemical reactivity with the electrolyte. The improved performance of NPFG-0.3 over NFG, PG, and pure rGO is mainly ascribed to the fast-kinetic process owing to the well-balanced electron/ion transport phenomenon. A symmetric coin cell supercapacitor device fabricated using NPFG-0.3 as the anode and cathode material with 6 M KOH aqueous electrolyte exhibits maximum specific energy of 38 W h kg-1, a maximum specific power of 716 W kg-1, and ∼88.2% capacitance retention after 10 000 cycles. The facile synthesis approach and promising electrochemical results suggest this synthesized NPFG-0.3 material has high potential for future supercapacitor application.

5.
RSC Adv ; 8(53): 30239-30247, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35546809

RESUMO

All-solid-state supercapacitors (ASSS) with solid-state electrolytes (SSEs) can be used to overcome the liquid leakage problem in devices. However, ionic conduction in solid electrolytes is one of the barriers to further improvements in ASSS. This paper describes the fabrication of a flexible SSE composed of poly(vinylidene fluoride-co-hexafluoropropylene), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and ethylene carbonate, which demonstrates an ultrahigh conductivity of 8.52 mS cm-1 and a wide 5 V operation voltage window of -2 to +3 V. Electrodes composed of active carbon, multiwall carbon nanotubes, and polyvinylidene fluoride were used as both anode and cathode to assemble a symmetrical supercapacitor. The resultant supercapacitor exhibits a maximum power density of 3747 W kg-1 at an energy density of 7.71 W h kg-1 and a maximum energy density 17.1 W h kg-1 at a power density of 630 W kg-1. It displays excellent cycling stability with 91.3% of the initial specific capacitance after 3000 charging/discharging cycles. This flexible SSE in this study demonstrates a high potential for use in energy storage, conversion, and wearable device applications.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 63(3): 677-84, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16157506

RESUMO

Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF(3)SO(3))-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF(3)SO(3) interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR)(2), CONHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF(3)SO(3) has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li(+) ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.


Assuntos
Quitosana/química , Eletrodos , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Carbonatos/química , Quitina , Dioxolanos/química , Sistemas de Liberação de Medicamentos , Condutividade Elétrica , Eletrólitos , Íons , Lítio/química , Cloreto de Lítio/química , Membranas Artificiais , Conformação Molecular , Estrutura Molecular , Plastificantes/química , Poliésteres , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...