Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 371(6529): 626-632, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542136

RESUMO

Solvent molecules influence the reactions of molecular hydrogen and oxygen on palladium nanoparticles. Organic solvents activate to form reactive surface intermediates that mediate oxygen reduction through pathways distinct from reactions in pure water. Kinetic measurements and ab initio quantum chemical calculations indicate that methanol and water cocatalyze oxygen reduction by facilitating proton-electron transfer reactions. Methanol generates hydroxymethyl intermediates on palladium surfaces that efficiently transfer protons and electrons to oxygen to form hydrogen peroxide and formaldehyde. Formaldehyde subsequently oxidizes hydrogen to regenerate hydroxymethyl. Water, on the other hand, heterolytically oxidizes hydrogen to produce hydronium ions and electrons that reduce oxygen. These findings suggest that reactions of solvent molecules at solid-liquid interfaces can generate redox mediators in situ and provide opportunities to substantially increase rates and selectivities for catalytic reactions.

2.
J Am Chem Soc ; 133(43): 17180-91, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21923178

RESUMO

The electronic structure of the [Cu(3)S(2)](3+) core of [(LCu)(3)(S)(2)](3+) (L = N,N,N',N'-tetramethyl-2R,3R-cyclohexanediamine) is investigated using a combination of Cu and S K-edge X-ray absorption spectroscopy and calculations at the density functional and multireference second-order perturbation levels of theory. The results show that the [Cu(3)S(2)](3+) core is best described as having all copper centers close to but more oxidized than Cu(2+), while the charge on the S(2) fragment is between that of a sulfide (S(2-)) and a subsulfide (S(2)(3-)) species. The [Cu(3)S(2)](3+) core thus is different from a previously described, analogous [Cu(3)O(2)](3+) core, which has a localized [(Cu(3+)Cu(2+)Cu(2+))(O(2-))(2)](3+) electronic structure. The difference in electronic structure between the two analogues is attributed to increased covalent overlap between the Cu 3d and S 3p orbitals and the increased radial distribution function of the S 3p orbital (relative to O 2p). These features result in donation of electron density from the S-S σ* to the Cu and result in some bonding interaction between the two S atoms at ~2.69 Å in [Cu(3)S(2)](3+), stabilizing a delocalized S = 1 ground state.


Assuntos
Cobre/química , Compostos Organometálicos/química , Teoria Quântica , Enxofre/química , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...