Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(6): e0158060, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333281

RESUMO

The human redox-sensitive Transient receptor potential melastatin type 2 (hTRPM2) channel contains the C-terminal Nudix hydrolase domain NUDT9H which most likely binds ADP-ribose. During oxidative stress, the intracellular release of ADP-ribose triggers the activation of hTRPM2. The TRPM2 orthologue from Nematostella vectensis (nv) is also stimulated by ADP-ribose but not by the oxidant hydrogen peroxide. For further clarification of the structure-function relationships of these two distantly related channel orthologues, we performed whole-cell as well as single channel patch-clamp recordings, Ca2+-imaging and Western blot analysis after heterologous expression of wild-type and mutated channels in HEK-293 cells. We demonstrate that the removal of the entire NUDT9H domain does not disturb the response of nvTRPM2 to ADP-ribose. The deletion, however, created channels that were activated by hydrogen peroxide, as did mutations within the NUDT9H domain of nvTRPM2 that presumably suppress its enzymatic function. The same findings were obtained with the nvTRPM2 channel when the NUDT9H domain was replaced by the corresponding sequences of the original hNUDT9 enzyme. Whenever the enzyme domain was mutated to presumably inactive variants, channel activation by hydrogen peroxide could be achieved. Moreover, we found strong evidences for ADPRase activity of the isolated NUDT9H domain of nvTRPM2 in co-expression experiments with the C-terminally truncated nvTRPM2 channel. Thus, there is a clear correlation between the loss of enzymatic activity and the capability of nvTRPM2 to respond to oxidative stress. In striking contrast, the channel function of the hTRPM2 orthologue, in particular its sensitivity to ADP-ribose, was abrogated by already small changes of the NUDT9H domain. These findings establish nvTRPM2 as a channel gated by ADP-ribose through a novel mechanism. We conclude that the endogenous NUDT9H domain does not directly affect ADP-ribose-dependent gating of the nvTRPM2 channel; instead it exerts an independent catalytic function which possibly controls the intracellular availability of ADP-ribose.


Assuntos
Adenosina Difosfato Ribose/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Anêmonas-do-Mar/metabolismo , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Animais , Biocatálise/efeitos dos fármacos , Western Blotting , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Técnicas de Patch-Clamp , Domínios Proteicos , Deleção de Sequência , Canais de Cátion TRPM/genética
2.
PLoS One ; 10(6): e0128490, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053791

RESUMO

Most animal tissues and organ systems are comprised of highly ordered arrays of varying cell types. The development of external sensory organs requires complex cell-cell communication in order to give each cell a specific identity and to ensure a regular distributed pattern of the sensory bristles. This involves both long and short range signaling mediated by either diffusible or cell anchored factors. In a variety of processes the heterophilic Irre Cell Recognition Module, consisting of the Neph-like proteins: Roughest, Kin of irre and of the Nephrin-like proteins: Sticks and Stones, Hibris, plays key roles in the recognition events of different cell types throughout development. In the present study these proteins are apically expressed in the adhesive belt of epithelial cells participating in sense organ development in a partially exclusive and asymmetric manner. Using mutant analysis the GAL4/UAS system, RNAi and gain of function we found an involvement of all four Irre Cell Recognition Module-proteins in the development of a highly structured array of sensory organs in the wing disc. The proteins secure the regular spacing of sensory organs showing partial redundancy and may function in early lateral inhibition events as well as in cell sorting processes. Comparisons with other systems suggest that the Irre Cell Recognition module is a key organizer of highly repetitive structures.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sensação , Sensilas/metabolismo , Asas de Animais/metabolismo , Animais , Forma Celular , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Pseudópodes/metabolismo
3.
Pflugers Arch ; 465(11): 1599-610, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23708837

RESUMO

TRPM8 is a voltage-dependent cation channel additionally gated by cold temperatures, menthol, and icilin. Stimulation by the chemical agonists is at least in part mediated by a conserved sequence motif in transmembrane segment S3. Based on molecular dynamics simulation studies for TRPM8 a gating model was recently developed which predicts a direct electrostatic interaction between S3 and S4. Here, we performed charge reversal mutations to pinpoint possible interactions of the putative S4 voltage sensor with S3. The charge reversals R842D, R842E, and D835R in S4 prevented channel glycosylation and function, indicating a deficient insertion into the plasma membrane. The mutations R842D and R842E were specifically rescued by the reciprocal charge reversal D802R in S3. The alternative charge reversal in S3, D796R, failed to compensate for the dysfunction of the mutants R842D and R842E. Remarkably, the double charge reversal mutants R842D + D802R and R842E + D802R retained intrinsic voltage-sensitivity, although the critical voltage sensor arginine was substituted by a negatively charged residue. Likewise, the insertion of three additional positively charged residues into S4 did not crucially change the voltage-sensitivity of TRPM8 but abolished the sensitivity to icilin. We conclude that S4 does not play a separate role for the gating of TRPM8. Instead, the cooperation with the adjacent segment S3 and the combined charges in these two segments is of general importance for both channel maturation and channel function. This mechanism distinguishes TRPM8 from other voltage-dependent cation channels within and outside the TRP family.


Assuntos
Membrana Celular/metabolismo , Ativação do Canal Iônico , Canais de Cátion TRPM/metabolismo , Potenciais de Ação , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética
4.
PLoS One ; 7(11): e49877, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185472

RESUMO

For mammalian TRPM8, the amino acid residues asparagine-799 and aspartate-802 are essential for the stimulation of the channel by the synthetic agonist icilin. Both residues belong to the short sequence motif N-x-x-D within the transmembrane segment S3 highly conserved in the entire superfamily of voltage-dependent cation channels, among them TRPM8. Moreover, they are also conserved in the closely related TRPM2 channel, which is essentially voltage-independent. To analyze the differential roles of the motif for the voltage-dependent and voltage-independent gating, we performed reciprocal replacements of the asparagine and aspartate within the S3 motif in both channels, following the proposed idea that specific electrostatic interactions with other domains take place during gating. Wild-type and mutant channels were heterologeously expressed in HEK-293 cells and channel function was analyzed by whole-cell patch-clamp analysis as well as by Ca(2+)-imaging. Additionally, the expression of the channels in the plasma membrane was tested by Western blot analysis, in part after biotinylation. For the mutations of TRPM8, responses to menthol were only compromised if also the expression of the glycosylated channel isoform was prevented. In contrast, responses to cold were consistently and significantly attenuated but not completely abolished. For TRPM2, surface expression was not significantly affected by any of the mutations but channel function was only retained in one variant. Remarkably, this was the variant of which the corresponding mutation in TRPM8 exerted the most negative effects both on channel function and expression. Furthermore, we performed an exchange of the inner pair of residues of the N-x-x-D motif between the two channels, which proved deleterious for the functional expression of TRPM8 but ineffective on TRPM2. In conclusion, the N-x-x-D motif plays specific roles in TRPM8 and TRPM2, reflecting different requirements for voltage-dependent and voltage-independent channel gating.


Assuntos
Sequência Conservada , Motivos de Nucleotídeos , Canais de Cátion TRPM , Sequência Conservada/genética , Células HEK293 , Humanos , Mutação , Motivos de Nucleotídeos/efeitos dos fármacos , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína/genética , Transporte Proteico , Pirimidinonas/farmacologia , Eletricidade Estática , Propriedades de Superfície , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA