Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Neurol Surg B Skull Base ; 85(4): 363-369, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966300

RESUMO

Objective The aim of this work was the development of an augmented reality system including the functionality of conventional surgical navigation systems. Methods An application software for the Augmented Reality System HoloLens 2 from Microsoft was developed. It detects the position of the patient as well as position of surgical instruments in real time and displays it within the two-dimensional (2D) magnetic resonance imaging or computed tomography (CT) images. The surgical pointer instrument, including a pattern that is recognized by the HoloLens 2 sensors, was created with three-dimensional (3D) printing. The technical concept was demonstrated at a cadaver skull to identify anatomical landmarks. Results With the help of the HoloLens 2 and its sensors, the real-time position of the surgical pointer instrument could be shown. The position of the 3D-printed pointer with colored pattern could be recognized within 2D-CT images when stationary and in motion at a cadaver skull. Feasibility could be demonstrated for the clinical application of transsphenoidal pituitary surgery. Conclusion The HoloLens 2 has a high potential for use as a surgical navigation system. With subsequent studies, a further accuracy evaluation will be performed receiving valid data for comparison with conventional surgical navigation systems. In addition to transsphenoidal pituitary surgery, it could be also applied for other surgical disciplines.

2.
J Pers Med ; 14(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392613

RESUMO

The use of stereotactic frames is a common practice in neurosurgical interventions such as brain biopsy and deep brain stimulation. However, conventional stereotactic frames have been shown to require modification and adaptation regarding patient and surgeon comfort as well as the increasing demand for individualized medical treatment. To meet these requirements for carrying out state-of-the-art neurosurgery, a 3D print-based, patient-specific stereotactic system was developed and examined for technical accuracy. Sixteen patient-specific frames, each with two target points, were additively manufactured from PA12 using the Multi Jet Fusion process. The 32 target points aim to maximize the variability of biopsy targets and depths for tissue sample retrieval in the brain. Following manufacturing, the frames were measured three-dimensionally using an optical scanner. The frames underwent an autoclave sterilization process prior to rescanning. The scan-generated models were compared with the planned CAD models and the deviation of the planned target points in the XY-plane, Z-direction and in the resulting direction were determined. Significantly lower (p < 0.01) deviations were observed when comparing CAD vs. print and print vs. sterile in the Z-direction (0.17 mm and 0.06 mm, respectively) than in the XY-plane (0.46 mm and 0.16 mm, respectively). The resulting target point deviation (0.51 mm) and the XY-plane (0.46 mm) are significantly higher (p < 0.01) in the CAD vs. print comparison than in the print vs. sterile comparison (0.18 mm and 0.16 mm, respectively). On average, the results from the 32 target positions examined exceeded the clinically required accuracy for a brain biopsy (2 mm) by more than four times. The patient-specific stereotaxic frames meet the requirements of modern neurosurgical navigation and make no compromises when it comes to accuracy. In addition, the material is suitable for autoclave sterilization due to resistance to distortion.

3.
Neurosurg Focus ; 56(1): E8, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163343

RESUMO

OBJECTIVE: The placement of a ventricular catheter, that is, an external ventricular drain (EVD), is a common and essential neurosurgical procedure. In addition, it is one of the first procedures performed by inexperienced neurosurgeons. With or without surgical experience, the placement of an EVD according to anatomical landmarks only can be difficult, with the potential risk for inaccurate catheter placement. Repeated corrections can lead to avoidable complications. The use of mixed reality could be a helpful guide and improve the accuracy of drain placement, especially in patients with acute pathology leading to the displacement of anatomical structures. Using a human cadaveric model in this feasibility study, the authors aimed to evaluate the accuracy of EVD placement by comparing two techniques: mixed reality and freehand placement. METHODS: Twenty medical students performed the EVD placement procedure with a Cushing's ventricular cannula on the right and left sides of the ventricular system. The cannula was placed according to landmarks on one side and with the assistance of mixed reality (Microsoft HoloLens 2) on the other side. With mixed reality, a planned trajectory was displayed in the field of view that guides the placement of the cannula. Subsequently, the actual position of the cannula was assessed with the help of a CT scan with a 1-mm slice thickness. The bony structure as well as the left and right cannula positions were registered to the CT scan with the planned target point before the placement procedure. CloudCompare software was applied for registration and evaluation of accuracy. RESULTS: EVD placement using mixed reality was easily performed by all medical students. The predefined target point (inside the lateral ventricle) was reached with both techniques. However, the scattering radius of the target point reached through the use of mixed reality (12 mm) was reduced by more than 54% compared with the puncture without mixed reality (26 mm), which represents a doubling of the puncture accuracy. CONCLUSIONS: This feasibility study specifically showed that the integration and use of mixed reality helps to achieve more than double the accuracy in the placement of ventricular catheters. Because of the easy availability of these new tools and their intuitive handling, we see great potential for mixed reality to improve accuracy.


Assuntos
Realidade Aumentada , Humanos , Estudos de Viabilidade , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/cirurgia , Catéteres , Drenagem/métodos , Ventriculostomia/métodos
4.
Neurosurg Focus ; 56(1): E10, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163342

RESUMO

OBJECTIVE: Current application of mixed reality as a navigation aid in the field of spinal navigation points to the potential of this technology in spine surgery. Crucial factors for acceptance include intuitive workflow, system stability, reliability, and accuracy of the method. The authors therefore aimed to investigate the accuracy of the system in visualization of anatomical structures using mixed reality in the example of pedicles of the thoracic spine in a human cadaveric study. Potential difficulties and limitations are discussed. METHODS: CT scans of a human cadaveric spinal column specimen were performed. After segmentation and import into the advanced HoloLens 2 software, the vertebrae were exposed. The vertebral arches were preserved on one side for a landmark-based surface registration, whereas pedicles were exposed on the other side in order to measure and evaluate deviation of the overlay holographs with regard to the exact anatomical structure. Accuracy was measured and statistically evaluated. RESULTS: In this work it was demonstrated that the overlay of the virtual 3D model pedicles with the real anatomical structures with anatomical landmark registration was within an acceptable surgical accuracy with the mean value of 2.1 mm (maximum 3.8 mm, minimum 1.2 mm). The highest accuracy was registered at the medial and lateral pedicle wall, and the measurement results were best in the region of the middle thoracic spine. CONCLUSIONS: The accuracy analysis for mixed reality (i.e., between the virtual and real anatomical situation of the thoracic spine) showed a very good agreement when focus was on the pedicles. This work is thus a rare proof of the precision of segmentation to the potential surgical area. The results encourage researchers to open up mixed reality technology in its development and application for spinal navigation.


Assuntos
Realidade Aumentada , Parafusos Pediculares , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Coluna Vertebral/cirurgia , Cadáver
5.
Neurosurg Focus ; 56(1): E17, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163346

RESUMO

OBJECTIVE: Despite mixed reality being an emerging tool for tailored neurosurgical treatment and safety enhancement, the use of mixed reality in the education of German medical students is not established in the field of neurosurgery. The present study aimed to investigate medical students' perspectives on the use of mixed reality in neurosurgical medical education. METHODS: Between July 3, 2023, and August 31, 2023, an online survey was completed by German medical students through their affiliated student associations and educational institutions. The survey included 16 items related to mixed reality in neurosurgery, with participants providing ratings on a 4-point Likert scale to indicate their level of agreement with these statements. RESULTS: A total of 150 students from 27 medical schools in Germany took part in the survey. A significant majority comprising 131 (87.3%) students expressed strong to intense interest in mixed-reality courses in neurosurgery, and 108 (72%) reported an interest in incorporating mixed reality into their curriculum. Furthermore, 94.7% agreed that mixed reality may enhance their understanding of operative neuroanatomy and 72.7% agreed with the idea that teaching via mixed-reality methods may increase the probability of the use of mixed reality in their future career. The majority (116/150 [77.3%]) reported that the preferred optimum timepoint for teaching with mixed reality might be within the first 3 years of medical school. In particular, more students in the first 2 years preferred to start mixed-reality courses in the first 2 years of medical school compared to students in their 3rd to 6th years of medical school (71.9% vs 41.5%, p = 0.003). Residents and attending specialists were believed to be appropriate teachers by 118 students (78.7%). CONCLUSIONS: German medical students exhibited significant interest and willingness to engage in mixed reality in neurosurgery. Evidently, there is a high demand for medical schools to provide mixed-reality courses. Students seem to prefer the courses as early as possible in their medical school education in order to transfer preclinical neuroanatomical knowledge into operative neurosurgical anatomy by using this promising technique.


Assuntos
Realidade Aumentada , Neurocirurgia , Estudantes de Medicina , Humanos , Faculdades de Medicina , Neurocirurgia/educação , Currículo , Inquéritos e Questionários
6.
Artigo em Inglês | MEDLINE | ID: mdl-37940113

RESUMO

BACKGROUND: In general, sufficient anchoring of screws in the bone material ensures the intended primary stability. METHODS: Shape memory materials offers the option of using temperature-associated deformation energy in a targeted manner in order to do justice to the special situation of osteoporotic bones or the potential lack of anchoring. An expansion screw was developed that takes this possibility and these requirements into account. Using finite element analysis, the variability of screw configuration and actuator was assessed from shape memory. In particular, the dimensioning of the screw slot, the actuator length and the actuator diameter as well as the angle of attack in relation to the intended force development were considered. RESULTS: As a result of the finite element analysis, a special configuration of expansion screw and shape memory element could be found. Accordingly, with an optimal screw diameter of 4 mm, an actuator diameter of 0.8 mm, a screw slot of 7.8 mm in length and an angle of attack of 25 degrees, the best compromise between individual components and high efficiency in favor of maximum strength can be predicted. CONCLUSION: Shape memory material offers the possibility of using completely new forms of power development. By skillfully modifying the mechanical and shape memory elements, their interaction results in a calculated development of force in favor of a high primary stability of the screw material used. Activation by means of body temperature is a very elegant way of initializing the intended locking and screw strength.

7.
3D Print Med ; 9(1): 28, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801133

RESUMO

BACKGROUND: Restoration of mobility of the elbow after post-traumatic elbow stiffening due to osteophytes is often a problem. METHODS: The anatomical structures were segmented within the CT-scan. Afterwards, the Multi Jet Fusion 3D-printing was applied to create the model made of biocompatible and steam-sterilizable plastic. Preoperative simulation of osteophyte resection at the 3D-model was performed as well as the direct comparison with the patient anatomy intraoperatively. RESULTS: The patient-specific was very helpful for the preoperative simulation of the resection of elbow osteophytes. The 3D anatomical representation improved the preoperative plan its implementation. A high degree of fidelity was found between the 3D Printed Anatomical representation and the actual joint pathology. CONCLUSIONS: Arthrolysis of complex post-traumatic bony changes is an important indication for the use of 3D models for preoperative planning. Due to the use of 3D printing and software simulation, accurate resection planning is feasible and residual bony stiffening can be avoided. 3D printing models can lead to an improvement in surgical quality.

8.
3D Print Med ; 9(1): 29, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831407

RESUMO

The aim of the project was to develop a patient-specific stereotactic system that allows simultaneous and thus time-saving treatment of both cerebral hemispheres and that contains all spatial axes and can be used as a disposable product. Furthermore, the goal was to reduce the size and weight of the stereotactic system compared to conventional systems to keep the strain on the patient, who is awake during the operation, to a minimum. In addition, the currently mandatory computed tomography should be avoided in order not to expose the patient to harmful X-ray radiation as well as to eliminate errors in the fusion of CT and MRI data.3D printing best meets the requirements in terms of size and weight: on the one hand, the use of plastic has considerable potential for weight reduction. On the other hand, the free choice of the individual components offers the possibility to optimize the size and shape of the stereotactic system and to adapt it to the individual circumstances while maintaining the same precision. The all-in-one stereotactic system was produced by means of the Multi Jet Fusion process. As a result, the components are highly precise, stable in use, lightweight and sterilizable. The number of individual components and interfaces, which in their interaction are potential sources of error, was significantly reduced. In addition, on-site manufacturing leads to faster availability of the system.Within the project, a patient-specific stereotaxy system was developed, printed, and assembled, which enables the execution of deep brain stimulation via only three bone anchors located on the skull. Pre-developed MRI markers, which can be screwed directly onto the bone anchors via the sleeves, eliminate the need for a CT scan completely. The fusion of the data, which is no longer required, suggests an improvement in target accuracy.

9.
Front Neurol ; 14: 1210926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645604

RESUMO

Introduction: Individuals with Parkinsonian disorders often face limited access to specialized physiotherapy and movement training due to staff shortages and increasing disease incidence, resulting in a rapid decline in mobility and feelings of despair. Addressing these challenges requires allocating adequate resources and implementing specialized training programs to ensure comprehensive care and support. Regarding these problems, a computer software was invented that might serve as an additional home-based extension to conventional physiotherapy. Methods: The trial took place in a rehabilitation center where every patient received equivalent treatment apart from the training program that was set up to be investigated over 3 weeks. Seventy four Patients were included and randomized between two intervention and one control group. Intervention group 1 (IG1) trained with the computer-based system two times a week while Intervention group 2 (IG2) received five training sessions a week. Using the markerless Microsoft Kinect® camera, participants controlled a digital avatar with their own body movements. UPDRS-III and Clinical measurements were performed before and after the three-week period. Results: Patients in all groups improved in UPDRS-III pre and post intervention whereas reduction rates were higher for IG1 (-10.89%) and IG2 (-14.04%) than for CG (-7.74%). Differences between the groups were not significant (value of ps CG/IG1 0.225, CG/IG2 0.347). Growth rates for the arm abduction angle were significantly higher in IG1 (11.6%) and IG2 (9.97%) than in CG (1.87%) (value of ps CG/IG1 0.006 and CG/IG2 0.018), as was the 5-steps-distance (CG 10.86% vs. IG1 24.5% vs. UG2 26.22%, value of ps CG/IG1 0.011 and CG/IG2 0.031). Discussion: The study shows the beneficial effects of computer-based training and substantiates the assumption of a similar impact in a home-based setting. The utilized software is feasible for such interventions and meets with the patient's approval. Group dynamics seem to have an additional supporting effect for the aspired objective of improving mobility and should be seen as an essential aspect of video games in therapy.

10.
3D Print Med ; 9(1): 22, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584831

RESUMO

An early childhood skull deformity can have long-term health and aesthetic consequences for the growing toddler. Individual helmet therapy aims at a healthy growth of the skull shape, although not every helmet shape guarantees an optimal result. To ensure an optimal fit, a scanning procedure based on a hand-held surface scanner was evaluated.The new helmet orthosis has an inner layer adapted to the shape of the head, which can be exchanged depending on the growth stage without changing the outer layer.In collaboration with surgeons and engineers, a new helmet orthosis concept was developed that is intended to offer improvements in wearing comfort, overall weight, fit and user-friendliness compared to conventional systems. In the course of the development process and in constant exchange with parents, a multi-layer helmet system with generous perforations was created using additive manufacturing processes. The new helmet shape promises easier handling, especially through the closure system.The helmet shape developed in this study is of high quality, especially in terms of fitting accuracy. Unpleasant perspiration is significantly reduced. The integration of the closure as a direct component of the helmet represents a secure closure option.

11.
3D Print Med ; 9(1): 19, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37389692

RESUMO

Sometimes cranioplasty is necessary to reconstruct skull bone defects after a neurosurgical operation. If an autologous bone is unavailable, alloplastic materials are used. The standard technical approach for the fabrication of cranial implants is based on 3D imaging by computed tomography using the defect and the contralateral site. A new approach uses 3D surface scans, which accurately replicate the curvature of the removed bone flap. For this purpose, the removed bone flap is scanned intraoperatively and digitized accordingly. When using a design procedure developed for this purpose creating a patient-specific implant for each bone flap shape in short time is possible. The designed skull implants have complex free-form surfaces analogous to the curvature of the skull, which is why additive manufacturing is the ideal manufacturing technology here. In this study, we will describe the intraoperative procedure for the acquisition of scanned data and its further processing up to the creation of the implant.

12.
Brain Commun ; 5(2): fcad070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006332

RESUMO

Motor learning is defined as an improvement in performance through practice. The ability to learn new motor skills may be particularly challenged in patients with Parkinson's disease, in whom motor execution is impaired by the disease-defining motor symptoms such as bradykinesia. Subthalamic deep brain stimulation is an effective treatment in advanced Parkinson's disease, and its beneficial effects on Parkinsonian motor symptoms and motor execution have been widely demonstrated. Much less is known about whether deep brain stimulation directly interacts with motor learning independent of modulation of motor execution. We investigated motor sequence learning in 19 patients with Parkinson's disease treated with subthalamic deep brain stimulation and 19 age-matched controls. In a cross-over design, patients performed an initial motor sequence training session with active and inactive stimulation, respectively (experiments separated by ≥14 days). Performance was retested after 5 min and after a 6 h consolidation interval with active stimulation. Healthy controls performed a similar experiment once. We further investigated neural correlates underlying stimulation-related effects on motor learning by exploring the association of normative subthalamic deep brain stimulation functional connectivity profiles with stimulation-related differences in performance gains during training. Pausing deep brain stimulation during initial training resulted in the inhibition of performance gains that could have been indicative of learning at the behavioural level. Task performance improved significantly during training with active deep brain stimulation, but did not reach the level of learning dynamics of healthy controls. Importantly, task performance after the 6 h consolidation interval was similar across patients with Parkinson's disease independent of whether the initial training session had been performed with active or inactive deep brain stimulation. This indicates that early learning and subsequent consolidation were relatively intact despite severe impairments of motor execution during training with inactive deep brain stimulation. Normative connectivity analyses revealed plausible and significant connectivity of volumes of tissue activated by deep brain stimulation with several cortical areas. However, no specific connectivity profiles were associated with stimulation-dependent differences in learning during initial training. Our results show that motor learning in Parkinson's disease is independent of modulation of motor execution by subthalamic deep brain stimulation. This indicates an important role of the subthalamic nucleus in regulating general motor execution, whereas its role in motor learning appears negligible. Because longer-term outcomes were independent of performance gains during initial training, patients with Parkinson's disease may not need to wait for an optimal motor state to practice new motor skills.

13.
Mol Biomed ; 3(1): 43, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508083

RESUMO

GSK3ß has been proposed to have an essential role in Coronaviridae infections. Screening of a targeted library of GSK3ß inhibitors against both SARS-CoV-2 and HCoV-229E to identify broad-spectrum anti-Coronaviridae inhibitors resulted in the identification of a high proportion of active compounds with low toxicity to host cells. A selected lead compound, T-1686568, showed low micromolar, dose-dependent activity against SARS-CoV-2 and HCoV-229E. T-1686568 showed efficacy in viral-infected cultured cells and primary 2D organoids. T-1686568 also inhibited SARS-CoV-2 variants of concern Delta and Omicron. Importantly, while inhibition by T-1686568 resulted in the overall reduction of viral load and protein translation, GSK3ß inhibition resulted in cellular accumulation of the nucleocapsid protein relative to the spike protein. Following identification of potential phosphorylation sites of Coronaviridae nucleocapsid, protein kinase substrate profiling assays combined with Western blotting analysis of nine host kinases showed that the SARS-CoV-2 nucleocapsid could be phosphorylated by GSK3ß and PKCa. GSK3ß phosphorylated SARS-CoV-2 nucleocapsid on the S180/S184, S190/S194 and T198 phospho-sites, following previous priming in the adjacent S188, T198 and S206, respectively. Such inhibition presents a compelling target for broad-spectrum anti-Coronaviridae compound development, and underlies the mechanism of action of GSK3ß host-directed therapy against this class of obligate intracellular pathogens.

15.
Front Vet Sci ; 9: 876741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915727

RESUMO

Three-dimensional (3D) printing techniques for patient-individual medicine has found its way into veterinary neurosurgery. Because of the high accuracy of 3D printed specific neurosurgical navigation devices, it seems to be a safe and reliable option to use patient-individual constructions for sampling brain tissue. Due to the complexity and vulnerability of the brain a particularly precise and safe procedure is required. In a recent cadaver study a better accuracy for the 3D printed MRI-based patient individual stereotactic brain biopsy device for dogs is determined compared to the accuracies of other biopsy systems which are currently used in veterinary medicine. This case report describes the clinical use of this 3D printed MRI-based patient individual brain biopsy device for brain sampling in three dogs. The system was characterized by a simple handling. Furthermore, it was an effective and reliable tool to gain diagnostic brain biopsy samples in dogs with no significant side effects.

16.
Front Neurol ; 13: 850326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685739

RESUMO

Background: The use of intraoperative neurophysiological monitoring, including direct nerve stimulation (especially the facial nerve), acoustic evoked potentials (AEP) and somatosensory evoked potentials (SSEP), is a helpful tool in the microsurgery of vestibular schwannoma to prevent nerve injury. Patient characteristics and intraoperative and postoperative variables might also influence the postoperative facial nerve function. The study was performed to investigate these variables and the intraoperative neurophysiological monitoring values. Methods: Seventy-nine patients with vestibular schwannoma were included consecutively into this study. Intraoperative neurophysiological monitoring, including SSEP, AEP, and direct nerve stimulation for facial and trigeminal nerve electromyography, was performed utilizing digital data storage in all cases. The intensity (in volts) of the direct stimulation and the latency (in ms) for the orbicularis oculi and the orbicularis oris muscle and the amplitude (in mV) was measured. Univariate and multivariate statistical analyses concerning the different parameters was performed directly after the operation and in the subsequent follow-ups 3 and 6 months after the operation. Results: The mean intensity was 0.79 V (SD.29). The latency and amplitude for the oris muscle was 5.2 ms (SD 2.07) and 0.68 mV (SD.57), respectively. The mean latency for the occuli muscle was 5.58 ms (SD 2.2) and the amplitude was 0.58 mV (SD 1.04). The univariate and multivariate statistical analyses showed significance concerning the postoperative facial nerve function and the amplitude of the direct stimulation of the facial nerve in the orbicularis oris muscle (p = 0.03), so repeated direct nerve stimulation might show FN function deterioration. The mean diameter of the tumors was 24 mm (range 10-57 mm). Cross total resection and near total was achieved in 76 patients (96%) and subtotal in three patients (4%). The preoperative House-Brakeman score (HBS) 1 was constant in 65 (82%) cases. The mortality in our series was 0%; the overall morbidity was 10%. The HBS was not influenced concerning the extent of resection. The mean follow-up was 28 months (range 6 to 60 months). The limitations of the study might be a low number of patients and the retrospective character of the study. Conclusion: Intraoperative neurophysiological monitoring is crucial in vestibular schwannoma surgery. Repeated direct nerve stimulation and a detected decreased amplitude might show facial nerve function deterioration.

17.
Microb Cell Fact ; 21(1): 21, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123472

RESUMO

We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline-threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540-588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/genética , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , COVID-19/patologia , COVID-19/virologia , Cromatografia Líquida de Alta Pressão , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Espectrometria de Massas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Schmerz ; 36(5): 357-362, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-34731324

RESUMO

BACKGROUND: With an increasing number of magnetic resonance imaging (MRI) examinations in the general population, there are no data available regarding the requirements of patients with implanted neurostimulators in Germany. Published data from the United States of America suggest a high need. The limited approval for MRI scans of implants are a common problem. OBJECTIVE: The focus is on the MRI needs of these pain patients and the predictability at the time of implantation. MATERIAL AND METHOD: We carried out a retrospective evaluation of the database of our hospital information system. We searched for all MRI requests for patients with an implanted neurostimulator between November 2011 and March 2019. In addition, we compared these data with the implantation of neurostimulators in the same period. RESULTS: We identified 171 MRI examinations and 22 requests without a subsequent examination. Out of 294 (28%) patients implanted in our center 83 had at least 1 MRI scan in our hospital. We observed a steadily increasing demand. In 111 of 171 (65%) performed examinations, there was no association between the indications leading to neurostimulator implantation and to MRI. A predictability could only be assumed for 43 of 193 (22%) MRI requests. CONCLUSION: In Germany, patients with an implanted neurostimulator have a high need for MRI diagnostics which cannot be predicted at the time of implantation. Therefore, only MRI-conditional systems should be implanted. The manufacturers need to adapt the implants and their approval to requirements.


Assuntos
Neuroestimuladores Implantáveis , Imageamento por Ressonância Magnética , Eletrodos Implantados , Alemanha , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
19.
Artigo em Inglês | MEDLINE | ID: mdl-34831787

RESUMO

The healthcare system has been placed under an enormous burden by the SARS-CoV-2 (COVID-19) pandemic. In addition to the challenge of providing sufficient care for COVID-19 patients, there is also a need to ensure adequate care for non-COVID-19 patients. We investigated neurosurgical care in a university hospital during the pandemic. We examined the second wave of the pandemic from 1 October 2020 to 15 March 2021 in this retrospective single-center study and compared it to a pre-pandemic period from 1 October 2019 to 15 March 2020. Any neurosurgical intervention, along with patient- and treatment-dependent factors, were recorded. We also examined perioperative complications and unplanned readmissions. A statistical comparison of the study groups was performed. We treated 535 patients with a total of 602 neurosurgical surgeries during the pandemic. This compares to 602 patients with 717 surgeries during the pre-pandemic period. There were 67 fewer patients (reduction to 88.87%) admitted and 115 fewer surgeries (reduction to 83.96%) performed, which were essentially highly elective procedures, such as cervical spinal stenosis, intracranial neurinomas, and peripheral nerve lesions. Regarding complication rates and unplanned readmissions, there was no significant difference between the COVID-19 pandemic and the non-pandemic patient group. Operative capacities were slightly reduced to 88% due to the pandemic. Nevertheless, comprehensive emergency and elective care was guaranteed in our university hospital. This speaks for the sufficient resources and high-quality processes that existed even before the pandemic.


Assuntos
COVID-19 , Neurocirurgia , Alemanha/epidemiologia , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2
20.
Pain Pract ; 21(8): 924-933, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34398496

RESUMO

OBJECTIVE: Patients fitted with a neurostimulator face a greater need to undergo magnetic resonance imaging (MRI) scans. Given the lack of literature in this regard, this study aims to review our experience with MRI examinations on patients implanted with a dorsal root ganglion stimulation (DRG-S) system and their potential adverse events. MATERIALS AND METHODS: We conducted a retrospective analysis of the prospective treatment documentation gathered from November 2011 to October 2020. We identified 259 MRI registrations for patients with an implanted neurostimulation system; the MRI examinations were performed using a 1.5 Tesla MRI system in accordance with a structured scheme. RESULTS: Among the 259 MRI registrations identified in this study, 28 corresponded to patients with an implanted DRG-S system. In 2 cases, no MRI scan was performed, and thus, only 26 MRI examinations were evaluated in detail. The DRG-S device was approved for the requested MRI scans in only 2 of these 26 cases (7.7%). In addition, 2 minor adverse events (syncopal episode and connection problem) were identified, and only the second problem (3.8%) was related to neurostimulator operation. CONCLUSIONS: Necessary MRI examinations in patients with DRG-S systems are rarely covered by the European CE/US Food and Drug Administration (CE/FDA) approval. Although the manufacturer recommendations are against the use of MRI in patients with implanted DRG-S in certain conditions, we performed these scans without causing injury to the patient or damaging the device. Given that data on safety are limited, MRIs should be conducted study related. We provide recommendations for the procedure that should be followed when an MRI is needed urgently.


Assuntos
Gânglios Espinais , Imageamento por Ressonância Magnética , Humanos , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...