Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(16): 7967-7975, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30968077

RESUMO

Nanowire (NW) based devices for solar driven artificial photosynthesis have gained increasing interest in recent years due to the intrinsically high surface to volume ratio and the excellent achievable crystal qualities. However, catalytically active surfaces often suffer from insufficient stability under operational conditions. To gain a fundamental understanding of the underlying processes, the photochemical etching behavior of hexagonal and round GaN NWs in deionized water under illumination are investigated. We find that the crystallographic c-plane remains stable, whereas the m-planes are photochemically etched with rates up to 11 nm min-1, depending on the applied UV light intensity. By investigating nanowalls, we achieve control of the exposed crystallographic facets and find an enhanced stability of the a-plane compared to the m-plane. Photo-excited holes, which drift to the side facets due to the upward surface band bending in nominally n-type (not intentionally doped) GaN, are identified as the driving force of the process, which allows the development of concepts for the stabilization of the nanostructures. A geometrically enhanced absorption of periodic NW arrays is correlated with a dependence of the etch rate on the NW pitch and diameter. Further, we find selective photochemical etching of the NW base in the presence of sub-band gap illumination, which is attributed to defect-related absorption in this region. These results provide improved understanding of the roles of inhomogeneous defect distribution, light excitation profiles, and different surface facets on the photochemical stability of nanostructures and provide viable strategies for improving stabilities under light-driven reaction conditions.

2.
Nanoscale ; 11(10): 4578-4584, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809617

RESUMO

In this work, the selective area growth of GaN nanowalls and nanogrids on sapphire and GaN on sapphire by molecular beam epitaxy is investigated. We demonstrate the fabrication of homogeneous GaN nanowall arrays with different widths, distances and specific crystallographic side facets. Photoluminescence spectroscopy of as-grown GaN nanowalls reveals a high crystal quality and low defect density. Moreover, a distinct dependence of the nanowall width and the intensity of the donor-bound exciton emission on the crystal orientation of the sidewall facets is found and explained by different surface states for a-plane and m-plane GaN. The waveguide character of the GaN nanowalls, given by the large refractive index of GaN and the subwavelength size of the structures, is analysed by experimental transmission measurements and numerical simulations. Our results and the high epitaxial control achieved by selective area growth show the potential of tailor-made nanowall-based devices, e.g., in photocatalysis or nanofluidics.

3.
Nano Lett ; 17(8): 4886-4893, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28732167

RESUMO

Modulation-doped III-V semiconductor nanowire (NW) heterostructures have recently emerged as promising candidates to host high-mobility electron channels for future high-frequency, low-energy transistor technologies. The one-dimensional geometry of NWs also makes them attractive for studying quantum confinement effects. Here, we report correlated investigations into the discrete electronic sub-band structure of confined electrons in the channel of Si δ-doped GaAs-GaAs/AlAs core-superlattice NW heterostructures and the associated signatures in low-temperature transport. On the basis of accurate structural and dopant analysis using scanning transmission electron microscopy and atom probe tomography, we calculated the sub-band structure of electrons confined in the NW core and employ a labeling system inspired by atomic orbital notation. Electron transport measurements on top-gated NW transistors at cryogenic temperatures revealed signatures consistent with the depopulation of the quasi-one-dimensional sub-bands, as well as confinement in zero-dimensional-like states due to an impurity-defined background disorder potential. These findings are instructive toward reaching the ballistic transport regime in GaAs-AlGaAs based NW systems.

4.
Nanoscale ; 9(21): 7179-7188, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28513695

RESUMO

The large surface-to-volume ratio of GaN nanowires implicates sensitivity of the optical and electrical properties of the nanowires to their surroundings. The implementation of an (Al,Ga)N shell with a larger band gap around the GaN nanowire core is a promising geometry to seal the GaN surface. We investigate the luminescence and structural properties of selective area-grown GaN-(Al,Ga)N core-shell nanowires grown on Si and diamond substrates. While the (Al,Ga)N shell allows a suppression of yellow defect luminescence from the GaN core, an overall intensity loss due to Si-related defects at the GaN/(Al,Ga)N interface has been observed in the case of Si substrates. Scanning transmission electron microscopy measurements indicate a superior crystal quality of the (Al,Ga)N shell along the nanowire side facets compared to the (Al,Ga)N cap at the top facet. A nucleation study of the (Al,Ga)N shell reveals a pronounced bowing of the nanowires along the c-direction after a short deposition time which disappears for longer growth times. This is assigned to an initially inhomogeneous shell nucleation. A detailed study of the proceeding shell growth allows the formulation of a strain-driven self-regulating (Al,Ga)N shell nucleation model.

5.
Nano Lett ; 16(11): 7098-7106, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27766884

RESUMO

We demonstrate the selective area growth of GaN-(Al,Ga)N core-shell nanowire heterostructures directly on Si(111). Photoluminescence spectroscopy on as-grown nanowires reveals a strong blueshift of the GaN band gap from 3.40 to 3.64 eV at room temperature. Raman measurements relate this shift to compressive strain within the GaN core. On the nanoscale, cathodoluminescence spectroscopy and scanning transmission electron microscopy prove the homogeneity of strain-related luminescence along the nanowire axis and the absence of significant fluctuations within the shell, respectively. A comparison of the experimental findings with numerical simulations indicates the absence of a significant defect-related strain relaxation for all investigated structures, with a maximum compressive strain of -3.4% for a shell thickness of 50 nm. The accurate control of the nanowire dimensions, namely, core diameter, shell thickness, and nanowire period, via selective area growth allows a specific manipulation of the resulting strain within individual nanowires on the same sample. This, in turn, enables a spatially resolved adjustment of the GaN band gap with an energy range of 240 meV in a one-step growth process.

6.
Nano Lett ; 15(11): 7544-51, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26455732

RESUMO

Semiconductor quantum dots embedded in nanowires (NW-QDs) can be used as efficient sources of nonclassical light with ultrahigh brightness and indistinguishability, needed for photonic quantum information technologies. Although most NW-QDs studied so far focus on heterostructure-type QDs that provide an effective electronic confinement potential using chemically distinct regions with dissimilar electronic structure, homostructure NWs can localize excitons at crystal phase defects in leading to NW-QDs. Here, we optically investigate QD emitters embedded in GaAs-AlGaAs core-shell NWs, where the excitons are confined in an ultrathin-diameter NW core and localized along the axis of the NW core at wurtzite (WZ)/zincblende (ZB) crystal phase defects. Photoluminescence (PL)-excitation measurements performed on the QD-emission reveal sharp resonances arising from excited electronic states of the axial confinement potential. The QD-like nature of the emissive centers are suggested by the observation of a narrow PL line width, as low as ~300 µeV, and confirmed by the observation of clear photon antibunching in autocorrelation measurements. Most interestingly, time-resolved PL measurements reveal a very short radiative lifetime <1 ns, indicative of a transition from a type-II to type-I band alignment of the WZ/ZB crystal interface in GaAs due to the strong quantum confinement in the ultrathin NW core.

7.
Nat Commun ; 4: 2931, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24304714

RESUMO

Semiconductor nanowires are widely considered to be the next frontier in the drive towards ultra-small, highly efficient coherent light sources. While NW lasers in the visible and ultraviolet have been widely demonstrated, the major role of surface and Auger recombination has hindered their development in the near infrared. Here we report infrared lasing up to room temperature from individual core-shell GaAs-AlGaAs nanowires. When subject to pulsed optical excitation, NWs exhibit lasing, characterized by single-mode emission at 10 K with a linewidth <60 GHz. The major role of non-radiative surface recombination is obviated by the presence of an AlGaAs shell around the GaAs-active region. Remarkably low threshold pump power densities down to ~760 W cm(-2) are observed at 10 K, with a characteristic temperature of T(0)=109±12 K and lasing operation up to room temperature. Our results show that, by carefully designing the materials composition profile, high-performance infrared NW lasers can be realised using III/V semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...