Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616462

RESUMO

An atomic-oxygen-erosion-resistant fluorinated benzoxazine resin and composite were developed. The benzoxazine resin, abbreviated as "BAF-oda-fu," consists of four benzoxazine rings, and was synthesized from bisphenol AF (BAF), 4,4'-oxydianiline (oda), furfurylamine (fu), and paraformaldehyde. The resin was characterized by infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). An analysis of the solvent-washed product showed a technical grade purity (>95%) and a yield of approximately 85%. Subsequent polymerization of the resin was successfully performed by heating step-wise and opening the benzoxazine rings to form a crosslinked network. Thermal analyses showed a melting temperature of 115 °C and polymerization temperature of 238 °C, both being characteristic values of benzoxazine monomers. The benzoxazine resin was also blended with polyoctahedral sisesquoxane (POSS) and reinforced with alumina fibers. The Tg of the resin, as determined by DMA of the composite, could reach as high as 308 °C when post-curing and the POSS additive were utilized. The low-Earth orbit atomic-oxygen erosion rate was simulated by an RF plasma asher/etcher. The atomic-oxygen resistance of poly(BAF-oda-fu) fell along an established trend line based on its fluorine content.

2.
Molecules ; 25(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971937

RESUMO

Innovative multifunctional materials that combine structural functionality with other spacecraft subsystem functions have been identified as a key enabling technology for future deep space missions. In this work, we report the structure and performance of multifunctional polymer matrix composites developed for aerospace applications that require both structural functionality and space radiation shielding. Composites comprised of ultra-high molecular weight polyethylene (UHMWPE) fiber reinforcement and a hydrogen-rich polybenzoxazine matrix are prepared using a low-pressure vacuum bagging process. The polybenzoxazine matrix is derived from a novel benzoxazine resin that possesses a unique combination of attributes: high hydrogen concentration for shielding against galactic cosmic rays (GCR), low polymerization temperature to prevent damage to UHMWPE fibers during composite fabrication, long shelf-life, and low viscosity to improve flow during molding. Dynamic mechanical analysis (DMA) is used to study rheological and thermomechanical properties. Composite mechanical properties, obtained using several standardized tests, are reported. Improvement in composite stiffness, through the addition of carbon fiber skin layers, is investigated. Radiation shielding performance is evaluated using computer-based simulations. The composites demonstrate clear advantages over benchmark materials in terms of combined structural and radiation shielding performance.


Assuntos
Benzoxazinas/química , Benzoxazinas/farmacologia , Meio Ambiente Extraterreno , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Radiação Cósmica/efeitos adversos , Testes Mecânicos , Polietilenos/química , Polimerização , Temperatura de Transição
3.
ACS Omega ; 3(9): 11569-11581, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459257

RESUMO

A systematic study has been carried out to develop a material with significant protection properties from galactic cosmic radiation and solar energetic particles. The research focused on the development of hydrogen-rich benzoxazines, which are particularly effective for shielding against such radiation. Newly developed benzoxazine resin can be polymerized at 120 °C, which meets the low-temperature processing requirements for use with ultrahigh molecular weight polyethylene (UHMWPE) fiber, a hydrogen-rich composite reinforcement. This highly reactive benzoxazine resin also exhibits low viscosity and good shelf-life. The structure of the benzoxazine monomer is confirmed by proton nuclear magnetic resonance and Fourier transform infrared spectroscopy. Polymerization behavior and thermal properties are evaluated by differential scanning calorimetry and thermogravimetric analysis. Dynamic mechanical analysis is used to study chemorheological properties of the benzoxazine monomer, rheological properties of the cross-linked polybenzoxazine, and rheological properties of UHMWPE-reinforced polybenzoxazine composites. The theoretical radiation shielding capability of the composite is also evaluated using computer-based simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...