Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 259: 121873, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852387

RESUMO

Since stormwater conveys a variety of contaminants into water bodies, green infrastructure (GI) is increasingly being adopted as an on-site treatment solution in addition to controlling peak flows. The purpose of this study was to identify differences in microbial water quality of stormwater in watersheds retrofitted with GI vs. those without GI. Considering stormwater is recently recognized as a contributor to the antibiotic resistance (AR) threat, another goal of this study was to characterize changes in the microbiome and collection of AR genes (resistome) of urban stormwater with season, rainfall characteristics, and fecal contamination. MinION long-read sequencing was used to analyze stormwater microbiome and resistome from watersheds with and without GI in Columbus, Ohio, United States, over 18 months. We characterized fecal contamination in stormwater via culturing Escherichia coli and with molecular microbial source tracking (MST) to identify sources of fecal contamination. Overall, season and storm event (rainfall) characteristics had the strongest relationships with changes in the stormwater microbiome and resistome. We found no significant differences in microbial water quality or the microbiome of stormwater in watersheds with and without GI implemented. However, there were differences between the communities of microorganisms hosting antibiotic resistance genes (ARGs) in stormwater from watersheds with and without GI, indicating the potential sensitivity of AR bacteria to treatment. Stormwater was contaminated with high concentrations of human-associated fecal bacterial genes, and the ARG host bacterial community had considerable similarities to human feces/wastewater. We also identified 15 potential pathogens hosting ARGs in these stormwater resistome, including vancomycin-resistant Enterococcus faecium (VRE) and multidrug-resistant Pseudomonas aeruginosa. In summary, urban stormwater is highly contaminated and has a great potential to spread AR and microbial hazards to nearby environments. This study presents the most comprehensive analysis of stormwater microbiome and resistome to date, which is crucial to understanding the potential microbial risk from this matrix. This information can be used to guide future public health policy, stormwater reuse programs, and urban runoff treatment initiatives.


Assuntos
Microbiota , Microbiologia da Água , Chuva , Ohio , Fezes/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Resistência Microbiana a Medicamentos/genética , Qualidade da Água
2.
J Environ Manage ; 364: 121256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865918

RESUMO

To address the deleterious impacts of excess soil erosion from the construction sites, the United States Clean Water Act requires that erosion and sediment control measures (ESCs) be implemented on construction projects disturbing more than 0.4 ha. Inlet protection devices (IPDs) are a common ESC utilized on construction projects to reduce the amount of sediment entering storm sewers. In Ohio, regulatory agencies use approved, non-proprietary IPDs made from commonly available materials (e.g., silt fence, geotextile, lumber, and aggregate) to mitigate sediment on construction projects; however, these IPDs often rely on extended ponding to remove sediment and require frequent maintenance making these unsuitable for road construction projects. Commercially manufactured (i.e., proprietary) IPDs which rely on filtration to quickly dewater following rainfall may prove more practical for road construction projects. However, little research which quantitatively compares the holistic performance of these two types of IPDs in field settings has been performed to date. To address this knowledge gap, the performance of 24 proprietary IPDs was evaluated at field-scale using simulated construction site runoff and compared to three non-proprietary IPDs currently approved for use in Ohio. Bypass flows, which typically occurred due to poor IPD fit to standard drainage inlets used in Ohio transportation settings, significantly increased effluent total suspended solids (TSS) and turbidity compared to tests of IPDs where bypass did not occur. Overflow, or intentional bypass around primary IPD flow pathways during high flows, did not significantly impact effluent water quality. Despite differences in treatment mechanisms (i.e., sedimentation versus filtration), the water quality performance of non-proprietary and proprietary IPDs were not statistically different, indicating comparable sediment removal was provided by both categories. Findings from this research can provide design engineers and state regulatory agencies the necessary tools to evaluate IPD performance in road construction settings and, ultimately, alleviate the impact of excess sediment discharged from construction sites.


Assuntos
Sedimentos Geológicos , Ohio , Monitoramento Ambiental
3.
PLoS One ; 19(6): e0305399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917214

RESUMO

Mosquitoes (Diptera: Culicidae) are one of the most impactful pests to human society, both as a nuisance and a potential vector of human and animal pathogens. Mosquito larvae develop in still aquatic environments. Eliminating these habitats near high human density or managing them to reduce the suitability for mosquitoes will reduce mosquito populations in these human environments and decrease the overall negative impact of mosquitoes on humans. One common source of standing water in urban and suburban environments is the water that pools in stormwater control measures. Previous studies have shown that some stormwater control measures generate large numbers of mosquitoes while others harbor none, and the reason for this difference remains unclear. Our study focuses on elucidating the factors that cause a stormwater control measure to be more or less suitable for mosquitoes. During the summers of 2021 and 2022, we collected and identified mosquito larvae from thirty stormwater control measures across central Ohio to assess variation in mosquito abundance and diversity among sites. Our goal was to determine if specific types of stormwater control measures (retention ponds, detention ponds, or constructed wetlands) harbored different abundances of mosquitoes or different community structures. We also assessed environmental parameters of these sites to elucidate their effects on mosquito abundance and diversity. Overall, we recorded the highest number of mosquito larvae and species in constructed wetlands. However, these sites were dominated by the innocuous species, Culex territans. Conversely, detention ponds held fewer mosquitoes but a higher proportion of known vector species, including Culex pipiens and Aedes vexans. The total number of mosquitoes across all sites was correlated with higher vegetation, more shade, lower water temperatures, and lower pH, suggesting stormwater control measures with these features may also be hotspots for mosquito proliferation.


Assuntos
Culicidae , Lagoas , Áreas Alagadas , Animais , Culicidae/fisiologia , Ohio , Larva , Biodiversidade , Controle de Mosquitos/métodos , Ecossistema , Humanos , Mosquitos Vetores/fisiologia
4.
Water Res ; 259: 121818, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815337

RESUMO

Bioretention cells (BRCs) control stormwater flow on-site during precipitation, reducing runoff and improving water quality through chemical, physical, and biological processes. While BRCs are effective in these aspects, they provide habitats for wildlife and may face microbial hazards from fecal shedding, posing a potential threat to human health and the nearby environment. However, limited knowledge exists regarding the ability to control microbial hazards (e.g., beyond using typical indicator bacteria) through stormwater biofiltration. Therefore, the purpose of this study is to characterize changes in the bacterial community of urban stormwater undergoing bioretention treatment, with the goal of assessing the public health implications of these green infrastructure solutions. Samples from BRC inflow and outflow in Columbus, Ohio, were collected post-heavy storms from October 2021 to March 2022. Conventional culture-based E. coli monitoring and microbial source tracking (MST) were conducted to identify major fecal contamination extent and its sources (i.e., human, canine, avian, and ruminant). Droplet digital polymerase chain reaction (ddPCR) was utilized to quantify the level of host-associated fecal contamination in addition to three antibiotic resistant genes (ARGs): tetracycline resistance gene (tetQ), sulfonamide resistance gene (sul1), and Klebsiella pneumoniae carbapenemase resistance gene (blaKPC). Subsequently, 16S rRNA gene sequencing was conducted to characterize bacterial community differences between stormwater BRC inflow and outflow. Untreated urban stormwater reflects anthropogenic contamination, suggesting it as a potential source of contamination to waterbodies and urban environments. When comparing inlet and outlet BRC samples, urban stormwater treated via biofiltration did not increase microbial hazards, and changes in bacterial taxa and alpha diversity were negligible. Beta diversity results reveal a significant shift in bacterial community structure, while simultaneously enhancing the water quality (i.e., reduction of metals, total suspended solids, total nitrogen) of urban stormwater. Significant correlations were found between the bacterial community diversity of urban stormwater with fecal contamination (e.g. dog) and ARG (sul1), rainfall intensity, and water quality (hardness, total phosphorous). The study concludes that bioretention technology can sustainably maintain urban microbial water quality without posing additional public health risks, making it a viable green infrastructure solution for heavy rainfall events exacerbated by climate change.


Assuntos
Chuva , Saúde Pública , Microbiologia da Água , Fezes/microbiologia , Qualidade da Água , Humanos , Ohio , Monitoramento Ambiental/métodos , Animais , Bactérias , Escherichia coli
5.
Environ Sci Pollut Res Int ; 31(22): 32428-32440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649610

RESUMO

Exposed soils associated with active construction sites provide opportunities for erosion and sediment transport during storm events, introducing risks associated with excess sediment to downstream infrastructure and aquatic biota. A better understanding of the drivers of sediment transport in construction site runoff is needed to improve the design and performance of erosion and sediment control measures (ESCMs). Eleven monitoring locations on 3 active road construction sites in central Ohio were established to characterize runoff quality from points of concentrated flow during storm events. Grab samples were analyzed for total suspended solids (TSS), turbidity, and particle size distribution (PSD). Median TSS concentrations and turbidity levels across all samples were 626 mg/L (range 25-28,600 mg/L) and 759 NTU (range 22-33,000 NTU), respectively. The median PSD corresponded to a silty clay loam, mirroring the soil texture of much of Ohio's subsoils. TSS concentrations and turbidity were significantly positively correlated with the rainfall intensity 10 min prior to sample collection, suggesting that higher flow rates created greater shear stress on bare soil which resulted in more erosion. Conversely, rainfall duration was negatively correlated with particle size, indicating that prolonged moisture from rainfall promoted the dispersion of soil aggregates which mobilized smaller particles. Multivariable linear regression models revealed that higher rainfall intensities corresponded to higher turbidity values, while higher TSS concentrations were associated with higher rainfall intensities, depths, and durations. Results from this study highlight the importance of reducing raindrop impact and subsequent shear stress applied by concentrated flows through the use of ESCMs to limit sediment export from construction sites.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Chuva , Sedimentos Geológicos/química , Solo/química , Erosão do Solo , Tamanho da Partícula , Ohio
6.
J Environ Manage ; 354: 120286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354613

RESUMO

The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores. In this study, the effectiveness of a bioretention cell (BRC) and high flow media filter (HFMF) in Huron, Ohio, were evaluated for removal of Bacillus globigii (Bg) spores (a harmless cognate of Ba). Three 4-8 mm simulated runoff events were created for each SCM using a fire hydrant and Bg spores were injected into the runoff upstream of the SCM inlets. The BRC significantly (p < 0.001) outperformed the HFMF in reducing Bg concentrations and loads, with an average load reduction of 1.9 log (∼99% reduction) compared to 0.4 (∼60% reduction), respectively. A probable critical design factor leading to these differences was the infiltration rate of the media and subsequent retention time within the filters, which was supported by similar disparities in suspended solids reductions. Differences in spore removal may also have been due to particle size distribution of the HFMF, which was more gravelly than the bioretention cell. At 3 and 6 months after the-simulated runoff tests, soil samples taken from both SCMs, yielding detectable Bg spores within the top 15 cm of media, with increased spore concentrations where ponding occurred for longer durations during the tests. This suggests that forebays and areas near inlets may be hotspots for spore cleanup in a real-world bioterrorism incident.


Assuntos
Bacillus anthracis , Bacillus , Animais , Humanos , Esporos Bacterianos , Bacillus subtilis
7.
Sci Total Environ ; 902: 166071, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558076

RESUMO

Road runoff contributes an array of pollutants which degrade the quality of receiving waters. Sediment conveyed in runoff results in loss of habitat and loss of reservoir capacity, among other undesirable impacts. To select and design stormwater control measures (SCMs), the sediment particle size distribution (PSD) is needed to quantify the required hydraulic retention time for particle settling and to understand what other treatment processes (e.g., filtration) are needed to meet sediment removal targets. A two-year field monitoring study was undertaken across the state of Ohio, USA, to evaluate the PSD of sediment in runoff at twelve roads. The highest TSS concentrations were observed on interstate highways (highest annual average daily traffic [AADT]) and minor arterials (low AADT), suggesting factors beyond AADT, such as antecedent dry period, rainfall intensity, and windborne dust and particulates, contribute to the varied sediment characteristics in runoff. The median TSS load across all samples collected was 2.7 kg/ha per storm event, while annual TSS loads for the monitoring sites varied from 98 kg/(ha·yr) to 519 kg/(ha·yr), with a mean value of 271 kg/(ha·yr). Particle size distributions varied across the monitoring sites, with mean and median d50 of 48.6 µm and 52.5 µm, respectively. Interstate highways (highest AADT) had significantly finer PSDs than other functional classes, while roads in low density residential areas had coarser PSDs than other land uses. Observed differences in PSD across road characteristics may guide SCM selection; dry detention basins and wet ponds/wetlands were predicted to provide effective removal across a variety of PSDs, while TSS reductions provided by hydrodynamic separators and high-flow media filters (which effectively remove larger particles) may be maximized in areas with coarser PSDs (e.g., roads surrounded by low density residential areas studied herein).

8.
Water Res ; 243: 120386, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494741

RESUMO

Identifying sources of pollutants in watersheds is critical to accurately predicting stormwater quality. Many existing software used to model stormwater quality rely on decades-old data sets which may not represent current runoff quality in the United States. Because of environmental regulations promulgated at the federal level over previous decades, there is a need to understand long-term trends (and potential shifts) in runoff quality to better parameterize models. Pollutant event mean concentrations (EMCs) from the National Stormwater Quality Database (NSQD) were combined with those from recent sources to understand if untreated stormwater quality has changed over the past 40 years. A significant decreasing monotonic trend (i.e., continually decreasing in a nonuniform fashion) was observed for total suspended solids (TSS), total phosphorus (TP), total Kjeldahl nitrogen (TKN), total copper (Cu), total lead (Pb), and total zinc (Zn) in the resultant database, suggesting that runoff quality has become less polluted with time. Median EMCs decreased from 99.2 to 42 mg/L, 0.34 to 0.26 mg/L, 1.27 to 1.03 mg/L, 40 to 6.8 µg/L, 110 to 3.7 µg/L, and 375 to 53.3 µg/L for TSS, TP, TN, Cu, Pb, and Zn, respectively, from the 1980s to the 2010s. These significant reductions often aligned temporally with advancements in clean manufacturing, amendments of the Clean Air Act, and other source control efforts which impact pollutant bioavailability and atmospheric deposition. Results suggest environmental regulations not specifically targeting stormwater management have had a positive impact on stormwater quality and that temporal fluctuations should be considered in modeling.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Estados Unidos , Poluentes Químicos da Água/análise , Chumbo , Zinco/análise , Fósforo , Monitoramento Ambiental/métodos , Chuva , Movimentos da Água
9.
J Environ Manage ; 344: 118370, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343472

RESUMO

Stormwater control measures (SCMs) are employed to reduce the multitude of deleterious impacts of urban runoff on receiving waters. Sediment accumulation in infiltration-based SCMs can clog these systems, resulting in lack of hydraulic function and reduced stormwater treatment efficacy. As such, pretreatment devices, such as forebays, filter strips, or catch basin sumps, are typically employed upstream of SCMs to remove sediment and prolong maintenance intervals. However, the tendency of SCMs to be retrofitted into space-constrained, ultra-urban areas makes including pretreatment technologies difficult. An alternative pretreatment device for green infrastructure SCMs was developed and tested in the laboratory; alterations were made to the standard curb and gutter, which is ubiquitous within urban environments, to increase the roughness of these surfaces. Roughness was added to the curb and/or gutter of mock road sections constructed of expanded polystyrene (EPS) foam using a computer numerical control (CNC) router. Twenty-one patterns with varying degrees of depth, shape, and spacing were implemented to trap sediment from simulated runoff; samples were collected upstream and downstream of the added roughness and analyzed for sediment removal and particle capture. Patterns which included added roughness in both the curb and gutter reduced total suspended solids (TSS) concentrations by up to 95% (median 85%) and reduced median d50 and d90 in runoff from 46.9 to 39.4 µm and 322 to 100 µm, respectively. Continued TSS removal was observed during repeated testing designed to simulate up to seven runoff events, indicating the potential for sustained sediment accumulation before the need for maintenance via regular street sweeping. With routine maintenance performed at appropriate intervals, these findings indicate that added roughness to curb and gutters could be utilized as a viable pretreatment technology for green infrastructure SCMs.


Assuntos
Monitoramento Ambiental , Purificação da Água , Monitoramento Ambiental/métodos , Chuva , Purificação da Água/métodos , Abastecimento de Água , Movimentos da Água
10.
Water Res ; 239: 120036, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178665

RESUMO

Urban stormwater conveys dissolved pollutants, micropollutants, particulate matter, natural debris, and anthropogenic macrodebris to receiving waters. Though it is widely recognized that anthropogenic macrodebris mobilized by stormwater contributes to global pollution management issues (e.g., ocean garbage patches), these materials often are not the focus of stormwater sampling campaigns. Furthermore, macrodebris can cause clogging of sewer systems, exacerbating flooding and public health hazards. Due to their engineered structures draining directly connected impervious areas (e.g., catch basins, inlets, and pipes), roads present a unique opportunity to mitigate the conveyance of macrodebris in stormwater. To optimize control measures, data are needed to understand expected volume and mass of macrodebris in road runoff. To address this gap in knowledge, a field monitoring study was conducted in Ohio (USA) to quantify the mass, volume, and moisture content of macrodebris transported by road runoff. Designed to filter macrodebris (i.e., material with diameter greater than 5 mm) while maintaining drainage, purpose-built inserts were deployed in catch basins at eleven geographically diverse locations across the state. Macrodebris samples were collected from the inserts every 11.6 days (mean) over a two-year monitoring period. Volume and mass of total and categorical (i.e., vegetation, cigarettes, plastic, glass, metal, wood, fabric, gravel, and paper) debris were characterized. Mean total macrodebris volume and mass were 4.62 L and 0.49 kg per sampling window, corresponding to mean volumetric and mass loading rates of 8.56 L/ha/day and 0.79 kg/ha/day, respectively. Natural debris (e.g., vegetation) was the primary contributor to macrodebris (mean 80.3% (i.e., 3.94 L of the mean 4.66 L total sample volume) and 79.7% (i.e., 0.42 kg of the mean 0.53 kg total sample mass) of total volume and mass, respectively), and exhibited seasonal peaks in autumn due to leaf drop. Road functional class (i.e., interstate, principal arterial, and minor arterial routes), land use, and development density significantly impacted macrodebris generation, with increased total and categorical macrodebris along urbanized interstate highways near commercial and residential areas. Macrodebris moisture content was highly variable (ranging from 1.5 to 440%; mean 78.5%), indicating additional management (e.g., drying, solidification) may be required prior to landfilling. Results of this study inform macrodebris mitigation strategies and required maintenance frequencies for pre-treatment devices for other stormwater control measures treating road runoff, including catch basin inserts and hydrodynamic separators, among others.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Ohio , Poluentes Químicos da Água/análise , Chuva , Movimentos da Água
11.
Chemosphere ; 320: 138103, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36775039

RESUMO

Bioretention systems are designed for quality treatment of stormwater. Particulate contaminants are commonly treated efficiently and accumulate mainly in the surface layer of the bioretention filter material. However, concerns exist that microplastic particles may not show equal accumulation behavior as other sediment particles. So far only two field and two laboratory studies are available on the fate of microplastics in few relatively newly built bioretention systems. Therefore, this study investigated the abundance and distribution of microplastics in nine 7-12 years old stormwater bioretention systems. It was found that microplastics generally accumulate on the surface of bioretention systems. Microplastic median particle concentrations decreased significantly from the surface layer (0-5 cm) of the filter material to the 10-15 cm depth layer from 448 to 136 particles/100 g, respectively. The distance to the inlet did not significantly affect the surface accumulation of microplastic particles, suggesting modest spatial variability in microplastics accumulation in older bioretention systems. Further, this study investigated the polymer composition in bioretention systems. It was shown that PP, EVA, PS and EPDM rubber are the most abundant polymer types in bioretention systems. Also, it was found that large percentages of microplastic particles are black particles (median percentage of black particles: 39%) which were found in 28 of the 33 investigated samples. This underlines the importance of including black particles in microplastic studies on stormwater, which has been overlooked in most previous studies.


Assuntos
Microplásticos , Plásticos , Chuva
12.
Sci Total Environ ; 862: 160827, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509280

RESUMO

Urban stormwater is a substantial source of non-point source pollution. Despite considerable monitoring efforts, little is known about stormwater quality in certain geographic regions. These spatial gaps induce uncertainty when extrapolating data and reduce model calibration capabilities, thereby limiting pollutant load reduction strategies. In this study, stormwater quality was monitored from 15 watersheds to characterize pollutant event mean concentrations (EMCs) and loads as a function of urban and forested (i.e., surrogates for pre-development) land use and land covers (LULCs) and rainfall patterns from a geographic region where these data are sparse. Residential and heavy industrial, heavy industrial, and industrial and commercial LULCs, respectively, were the primary generators of nutrients, total suspended solids (TSS), and heavy metals. Increased rainfall intensities (average and peak) significantly increased the EMCs of all particulate bound pollutants. Pollutant loads increased with rainfall depth and, in general, did not follow the same LULC trends as EMCs, suggesting loads were influenced substantially by watershed hydrologic responses. Mean annual urban loads of total phosphorus, total nitrogen, TSS, and zinc (Zn) ranged from 0.4 (low density residential [LDR]) to 1.5 (heavy industrial), 3.2 (single family residential [SFR]) to 11.5 (heavy industrial), 122.6 (SFR) to 1219.9 (heavy industrial), and 0.1 (LDR) to 0.7 (commercial) kg/ha/yr, respectively. Annual urban loads of TSS were 3.5 to 34 and - 1.5 to 6.8-fold greater than annual loads from forested and agricultural watersheds, respectively. Mean annual loads of heavy metals from urban LULCs were substantially greater than loads produced by forested and agricultural watersheds (e.g., 8.6 to 92 and 6.8 to 73-fold greater, respectively, for Zn), while loads of nutrients were generally similar between urban and agricultural watersheds. Findings herein suggest non-point source pollution will continue to threaten surface water quality as land is developed; results can help guide the development of cost-efficient stormwater management strategies.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Chuva , Zinco , Movimentos da Água
13.
Sci Total Environ ; 846: 157372, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850337

RESUMO

The increased use of bioretention facilities as a low impact development measure for treating stormwater runoff underscores the need to further understand their long-term function. Eventually, bioretention filter media must be (partly) replaced and disposed of at the end of its functional lifespan. While there are several studies of metal accumulation and distributions in bioretention media, less is known about organic pollutant pathways and accumulation in these filters. The present study considers the occurrence and accumulation of 16 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls, 13 phthalates, and two alkylphenols throughout 12 older bioretention facilities (7-13 years old) used for stormwater treatment in Michigan and Ohio, USA. These pollutant groups appear to behave similarly, with greater instances of detection and higher concentrations in the upper media layers which decrease with increased depth from the surface. The patterns of detection and concentration in the filter material may be explained by characteristics of the pollutants, such as molecular structures and solubility that affect the removal of the organic pollutants by the filter material. There is also a large variation in concentration magnitudes between the bioretention sites, most likely due to differences in pollutant sources, contributing catchment size and/or land uses.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Chuva , Poluentes Químicos da Água/análise , Abastecimento de Água
14.
Environ Res ; 212(Pt E): 113580, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671797

RESUMO

Wastewater-based epidemiology is an effective tool for monitoring infectious disease spread or illicit drug use within communities. At the Ohio State University, we conducted a SARS-CoV-2 wastewater surveillance program in the 2020-2021 academic year and compared results with the university-required weekly COVID-19 saliva testing to monitor COVID-19 infection prevalence in the on-campus residential communities. The objectives of the study were to rapidly track trends in the wastewater SARS-CoV-2 gene concentrations, analyze the relationship between case numbers and wastewater signals when adjusted using human fecal viral indicator concentrations (PMMoV, crAssphage) in wastewater, and investigate the relationship of the SARS-CoV-2 gene concentrations with wastewater parameters. SARS-CoV-2 nucleocapsid and envelope (N1, N2, and E) gene concentrations, determined with reverse transcription droplet digital PCR, were used to track SARS-CoV-2 viral loads in dormitory wastewater once a week at 6 sampling sites across the campus during the fall semester in 2020. During the following spring semester, research was focused on SARS-CoV2 N2 gene concentrations at 5 sites sampled twice a week. Spearman correlations both with and without adjusting using human fecal viral indicators showed a significant correlation (p < 0.05) between human COVID-19 positive case counts and wastewater SARS-CoV-2 gene concentrations. Spearman correlations showed significant relationships between N1 gene concentrations and both TSS and turbidity, and between E gene concentrations and both pH and turbidity. These results suggest that wastewater signal increases with the census of infected individuals, in which the majority are asymptomatic, with a statistically significant (p-value <0.05) temporal correlation. The study design can be utilized as a platform for rapid trend tracking of SARS-CoV-2 variants and other diseases circulating in various communities.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Universidades , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
15.
J Environ Manage ; 312: 114909, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305357

RESUMO

Floating treatment wetlands (FTWs), artificial systems constructed from buoyant mats and planted with emergent macrophytes, represent a potential retrofit to enhance the dissolved nutrient removal performance of existing retention ponds. Treatment occurs as water flows through the dense network of roots suspended in the water column, providing opportunities for pollutants to be removed via filtration, sedimentation, plant uptake, and adsorption to biofilms in the root zone. Despite several recent review articles summarizing the growing body of research on FTWs, FTW design guidance and strategies to optimize their contributions to pollutant removal from stormwater are lacking, due in part to a lack of statistical analysis on FTW performance at the field scale. A meta-analysis of eight international FTW studies was performed to investigate the influence of retention pond, catchment, and FTW design characteristics on effluent concentrations of nutrients and total suspended solids (TSS). Random forest regression, a tree-based machine learning approach, was used to model complex interactions between a suite of predictor variables to identify design strategies for both retention ponds and FTWs to enhance treatment of nutrient and sediment. Results indicate that pond design features, especially loading ratio and pond depth (which should be limited to 200:1 and 1.75 m, respectively), are most influential to effluent water quality, while the benefits of FTWs were limited to improving mitigation of phosphorus species and TSS which was primarily influenced by FTW coverage and planting density. Findings from this work inform wet retention pond and FTW design, as well as guidance on scenarios where FTW implementation is most appropriate, to improve dissolved nutrient and sediment removal in urban runoff.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Plantas , Lagoas , Poluentes Químicos da Água/análise , Qualidade da Água
17.
Sci Total Environ ; 807(Pt 3): 151046, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673059

RESUMO

While wastewater has been found to harbor SARS-CoV-2, the persistence of SARSCoV-2 in stormwater and potential transmission is poorly understood. It is plausible that the virus is detectable in stormwater samples where human-originated fecal contamination may have occurred from sources like sanitary sewer overflows, leaky wastewater pipes, and non-human animal waste. Because of these potential contamination pathways, it is possible that stormwater could serve as an environmental reservoir and transmission pathway for SARS-CoV-2. The objectives of this study are: 1) determine whether the presence of SARS-CoV-2 could be detected in stormwater via RT-ddPCR (reverse transcription-digital droplet PCR); 2) quantify human-specific fecal contamination using microbial source tracking; and 3) examine whether rainfall characteristics influence virus concentrations. To accomplish these objectives, we investigated whether SARS-CoV-2 could be detected from 10 storm sewer outfalls each draining a single, dominant land use in Columbus, Xenia, and Springboro, Ohio. Of the 25 samples collected in 2020, at minimum one SARS-CoV-2 target gene (N2 [US-CDC and CN-CDC], and E) was detected in 22 samples (88%). A single significant correlation (p = 0.001), between antecedent dry period and the USCDC N2 gene, was found between target gene concentrations and rainfall characteristics. Grouped by city, two significant relationships emerged showing cities had different levels of the SARS-CoV-2 E gene. Given the differences in scale, the county-level COVID-19 confirmed cases COVID-19 rates were not significantly correlated with stormwater outfall-scale SARS-CoV-2 gene concentrations. Countywide COVID-19 data did not accurately portray neighborhood-scale confirmed COVID-19 case rates. Potential hazards may arise when human fecal contamination is present in stormwater and facilitates future investigation on the threat of viral outbreaks via surfaces waters where fecal contamination may have occurred. Future studies should investigate whether humans are able to contract SARS-CoV-2 from surface waters and the factors that may affect viral longevity and transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cidades , Humanos , Águas Residuárias , Poluição da Água
18.
Sci Total Environ ; 809: 152206, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34890656

RESUMO

Many natural and anthropogenic factors cause degradation of urban stormwater quality, resulting in negative consequences to receiving waters. In order to improve water quality models at a variety of scales, accurate estimates of pollutant (nutrients, total suspended solids, and heavy metal) concentrations are needed using potential explanatory variables. To this end, a meta-analysis was performed on aggregated stormwater quality data from the published literature from 360 urban catchments worldwide to understand how urban land use and land cover (LULC), climate (i.e., KÓ§ppen-Geiger zone), and imperviousness (1) affect runoff quality, and (2) whether they are able to predict stormwater pollutant concentrations. Runoff pollutant concentrations were more influenced by LULC and climate than imperviousness. Differences in LULC significantly affected the generation of metals and some nitrogen species. Road, city center, and commercial LULCs generally produced the most elevated pollutant concentrations. Changes in climate zones resulted in significant differences in concentrations of nutrients and metals. Continental and arid climate zones produced runoff with the highest pollutant concentrations. Rainfall patterns seemed to have a more important role in affecting runoff quality than seasonal temperature. Differences in imperviousness only significantly affected chromium and nickel concentrations, although increased imperviousness led to slightly (not significantly) elevated concentrations of nutrients, suspended solids, and other heavy metals. Multiple linear regression models were created to predict the quality of urban runoff. Predictive equations were significant (p < 0.05) for 67% of the pollutants analyzed (ammonia, total Kjeldahl nitrogen, total nitrogen, total phosphorus, cadmium, nickel, lead, and zinc) suggesting that LULC, climate, and imperviousness are useful predictors of stormwater quality when local field monitoring or modeling is not practical. This study provides useful relationships to better inform urban stormwater quality models and regulations such as total maximum daily loads.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Efeitos Antropogênicos , Monitoramento Ambiental , Chuva , Movimentos da Água , Poluentes Químicos da Água/análise
19.
J Environ Manage ; 294: 112990, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146932

RESUMO

Permeable pavements are increasingly implemented to mitigate the negative hydrologic outcomes associated with impervious surfaces. However, the hydraulic function of permeable pavements is hindered by clogging in their joint openings, and systematic maintenance is needed to ensure hydraulic functionality throughout the design lifespan of these systems. To quantify the effectiveness of various maintenance measures, surface infiltration rates (SIRs) were measured before and after five different maintenance techniques were applied to five permeable interlocking concrete pavements (PICPs) in central Ohio, USA. Three maintenance techniques, the Municipal Cleaning Vehicle (MCV), the Rejuvenater, and a pressure washer and the Rejuvenater performed in series, significantly improved median SIRs from 16 to 26, 5 to 106, and 11 to 37 mm/min, respectively. However, pressure washing alone resulted in no significant difference to PICP SIR (median SIRs increased from 8 to 20 mm/min). Regenerative air street sweeping significantly worsened SIRs when performed during wet weather (median SIRs decreased from 19 to 4 mm/min) but had no significant impact on SIRs during dry weather (median SIRs decreased from 21 to 18 mm/min). This work captured the maintenance effectiveness of two techniques for the first or second time, namely the Rejuvenater and MCV, to investigate their use as a suitable maintenance technique. Further, the maintenance techniques were tested on multiple PICPs, thus the effect of in-situ pavement conditions had on hydraulic improvement via maintenance could be addressed. Differences in general upkeep, traffic, and runoff routed to a PICP affected the depth of clogging below the pavement surface, which forestalled hydraulic improvement. Though shown to improve the SIR of PICP systems, results indicate that the maintenance techniques were not capable of restoring pavement hydraulics to initial conditions. These results demonstrate the need for regular, routine maintenance and topping up of joint aggregate before clogging migrates deeper into the pavement profile.


Assuntos
Hidrocarbonetos , Movimentos da Água , Monitoramento Ambiental , Hidrologia , Ohio
20.
Water Res ; 189: 116648, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227609

RESUMO

Bioretention systems are widely used green infrastructure elements that utilize engineered bioretention soil media (BSM) for stormwater capture and treatment. Conventional bioretention soil media, which typically consists of sand, sandy loam, loamy sand or topsoil amended with compost, has limited capacity to remove and may leach some stormwater pollutants. Alternative engineered amendments, both organic and inorganic, have been tested to supplement BSM. Yet, municipalities and regulatory agencies have been slow to adopt these alternative amendments into their design specifications, partly because of a lack of clear guidance on how to select the right amendment to treat a target stormwater contaminant under highly variable climatic conditions. This article aims to provide that guidance by: (1) summarizing the current design BSM specifications adopted by jurisdictions worldwide, (2) comparing the performance of conventional and amended BSM, (3) highlighting advantages and limitations of BSM amendments, and (4) identifying challenges for implementing amendments in field conditions. The analysis not only informs the research community of the barriers faced by stormwater managers in implementing BSM amendments but also provides guidelines for their adoption by interested agencies to comply with existing regulations and meet design needs. This feedback loop could catalyze further innovation in the development of sustainable stormwater treatment technologies.


Assuntos
Poluentes Ambientais , Purificação da Água , Cidades , Chuva , Solo , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...