Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(23): 15705-15714, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34787411

RESUMO

Organic emissions from coastal waters play an important but poorly understood role in atmospheric chemistry in coastal regions. A mesocosm experiment focusing on facilitated biological blooms in coastal seawater, SeaSCAPE (Sea Spray Chemistry and Particle Evolution), was performed to study emission of volatile gases, primary sea spray aerosol, and formation of secondary marine aerosol as a function of ocean biological and chemical processes. Here, we report observations of aerosol-phase benzothiazoles in a marine atmospheric context with complementary measurements of dissolved-phase benzothiazoles. Though previously reported dissolved in polluted coastal waters, we report the first direct evidence of the transfer of these molecules from seawater into the atmosphere. We also report the first gas-phase observations of benzothiazole in the environment absent a direct industrial, urban, or rubber-based source. From the identities and temporal dynamics of the dissolved and aerosol species, we conclude that the presence of benzothiazoles in the coastal water (and thereby their emissions into the atmosphere) is primarily attributable to anthropogenic sources. Oxidation experiments to explore the atmospheric fate of gas-phase benzothiazole show that it produces secondary aerosol and gas-phase SO2, making it a potential contributor to secondary marine aerosol formation in coastal regions and a participant in atmospheric sulfur chemistry.


Assuntos
Partículas e Gotas Aerossolizadas , Atmosfera , Aerossóis , Atmosfera/análise , Benzotiazóis , Humanos , Água do Mar
2.
Nat Commun ; 11(1): 4834, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004794

RESUMO

Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at -46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L-1. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.


Assuntos
Aerossóis/química , Atmosfera/química , Butadienos/análise , Hemiterpenos/análise , Gelo/análise , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...