Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 11(1): 60, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207293

RESUMO

The MYC proto-oncogene (MYC) is one of the most frequently overexpressed genes in breast cancer that drives cancer stem cell-like traits, resulting in aggressive disease progression and poor prognosis. In this study, we identified zinc finger transcription factor 148 (ZNF148, also called Zfp148 and ZBP-89) as a direct target of MYC. ZNF148 suppressed cell proliferation and migration and was transcriptionally repressed by MYC in breast cancer. Depletion of ZNF148 by short hairpin RNA (shRNA) and CRISPR/Cas9 increased triple-negative breast cancer (TNBC) cell proliferation and migration. Global transcriptome and chromatin occupancy analyses of ZNF148 revealed a central role in inhibiting cancer cell de-differentiation and migration. Mechanistically, we identified the Inhibitor of DNA binding 1 and 3 (ID1, ID3), drivers of cancer stemness and plasticity, as previously uncharacterized targets of transcriptional repression by ZNF148. Silencing of ZNF148 increased the stemness and tumorigenicity in TNBC cells. These findings uncover a previously unknown tumor suppressor role for ZNF148, and a transcriptional regulatory circuitry encompassing MYC, ZNF148, and ID1/3 in driving cancer stem cell traits in aggressive breast cancer.

2.
Hepatology ; 67(1): 216-231, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833396

RESUMO

Sorafenib remains the only approved drug for treating patients with advanced hepatocellular carcinoma (HCC). However, the therapeutic effect of sorafenib is transient, and patients invariably develop sorafenib resistance (SR). Recently, TYRO3, a member of the TYRO3-AXL-MER family of receptor tyrosine kinases, was identified as being aberrantly expressed in a significant proportion of HCC; however, its role in SR is unknown. In this study, we generated two functionally distinct sorafenib-resistant human Huh-7 HCC cell lines in order to identify new mechanisms to abrogate acquired SR as well as new potential therapeutic targets in HCC. Initially, we investigated the effects of a microRNA (miR), miR-7-5p (miR-7), in both in vitro and in vivo preclinical models of human HCC and identified miR-7 as a potent tumor suppressor of human HCC. We identified TYRO3 as a new functional target of miR-7, which regulates proliferation, migration, and invasion of Huh-7 cells through the phosphoinositide 3-kinase/protein kinase B pathway and is markedly elevated with acquisition of SR. Furthermore, miR-7 effectively silenced TYRO3 expression in both sorafenib-sensitive and sorafenib-resistant Huh-7 cells, inhibiting TYRO3/growth arrest specific 6-mediated cancer cell migration and invasion. CONCLUSION: We identified a mechanism for acquiring SR in HCC that is through the aberrant expression of the TYRO3/phosphoinositide 3-kinase/protein kinase B signal transduction pathway, and that can be overcome by miR-7 overexpression. Taken together, these data suggest a potential role for miR-7 as an RNA-based therapeutic to treat refractory and drug-resistant HCC. (Hepatology 2018;67:216-231).


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Receptores Proteína Tirosina Quinases/genética , Análise de Variância , Western Blotting , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , MicroRNAs/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Niacinamida/farmacologia , RNA Interferente Pequeno/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Sorafenibe
3.
Methods Mol Biol ; 1699: 155-178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29086376

RESUMO

MicroRNAs (miRNAs) are a family of short noncoding RNA molecules that fine-tune expression of mRNAs. Often their altered expression is associated with a number of diseases, including cancer. Given that miRNAs target multiple genes and "difficult to drug" oncogenes, they present attractive candidates to manipulate as an anti-cancer strategy. MicroRNA-7 (miR-7) is a tumor suppressor miRNA that has been shown to target oncogenes overexpressed in cancers, such as the epidermal growth factor receptor (EGFR) and the nuclear factor-κ B subunit, RelA. Here, we describe methods for evaluating systemic delivery of miR-7 using a lipid nanoparticle formulation in an animal model. The microRNA is delivered three times, over 1 week and tissues collected 24 h after the last injection. RNA and protein are extracted from snap frozen tissues and processed to detect miRNA distribution and subsequent assessment of downstream targets and signaling mediators, respectively. Importantly, variability in efficiency of miRNA delivery will be observed between organs of the same animal and also between animals. Additionally, delivering the microRNA to organs other than the liver, particularly the brain, remains challenging. Furthermore, large variation in miRNA targets is seen both within tissues and across tissues depending on the lysis buffer used for protein extraction. Therefore, analyzing protein expression is dependent upon the method used for isolation and requires optimization for each individual application. Together, these methods will provide a foundation for those planning on assessing the efficacy of delivery of a miRNA in vivo.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , MicroRNAs/administração & dosagem , MicroRNAs/farmacocinética , Nanopartículas/administração & dosagem , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Injeções Intravenosas , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/química , Nanopartículas/química , Proteínas/isolamento & purificação , RNA/isolamento & purificação , Distribuição Tecidual , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
4.
Oncotarget ; 7(22): 31663-80, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27203220

RESUMO

microRNA-7-5p (miR-7-5p) is a tumor suppressor in multiple cancer types and inhibits growth and invasion by suppressing expression and activity of the epidermal growth factor receptor (EGFR) signaling pathway. While melanoma is not typically EGFR-driven, expression of miR-7-5p is reduced in metastatic tumors compared to primary melanoma. Here, we investigated the biological and clinical significance of miR-7-5p in melanoma. We found that augmenting miR-7-5p expression in vitro markedly reduced tumor cell viability, colony formation and induced cell cycle arrest. Furthermore, ectopic expression of miR-7-5p reduced migration and invasion of melanoma cells in vitro and reduced metastasis in vivo. We used cDNA microarray analysis to identify a subset of putative miR-7-5p target genes associated with melanoma and metastasis. Of these, we confirmed nuclear factor kappa B (NF-κB) subunit RelA, as a novel direct target of miR-7-5p in melanoma cells, such that miR-7-5p suppresses NF-κB activity to decrease expression of canonical NF-κB target genes, including IL-1ß, IL-6 and IL-8. Importantly, the effects of miR-7-5p on melanoma cell growth, cell cycle, migration and invasion were recapitulated by RelA knockdown. Finally, analysis of gene array datasets from multiple melanoma patient cohorts revealed an association between elevated RelA expression and poor survival, further emphasizing the clinical significance of RelA and its downstream signaling effectors. Taken together, our data show that miR-7-5p is a potent inhibitor of melanoma growth and metastasis, in part through its inactivation of RelA/NF-κB signaling. Furthermore, miR-7-5p replacement therapy could have a role in the treatment of this disease.


Assuntos
Movimento Celular , Proliferação de Células , Melanoma/metabolismo , MicroRNAs/metabolismo , Neoplasias Cutâneas/metabolismo , Fator de Transcrição RelA/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Estimativa de Kaplan-Meier , Masculino , Melanoma/genética , Melanoma/mortalidade , Melanoma/secundário , Camundongos Endogâmicos NOD , MicroRNAs/genética , Invasividade Neoplásica , Prognóstico , Interferência de RNA , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Fatores de Tempo , Fator de Transcrição RelA/genética , Transcriptoma , Transfecção
5.
PLoS One ; 8(8): e70700, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23976951

RESUMO

Nuclear receptors (NRs) and their coregulators play fundamental roles in initiating and directing gene expression influencing mammalian reproduction, development and metabolism. SRA stem Loop Interacting RNA-binding Protein (SLIRP) is a Steroid receptor RNA Activator (SRA) RNA-binding protein that is a potent repressor of NR activity. SLIRP is present in complexes associated with NR target genes in the nucleus; however, it is also abundant in mitochondria where it affects mitochondrial mRNA transcription and energy turnover. In further characterisation studies, we observed SLIRP protein in the testis where its localization pattern changes from mitochondrial in diploid cells to peri-acrosomal and the tail in mature sperm. To investigate the in vivo effects of SLIRP, we generated a SLIRP knockout (KO) mouse. This animal is viable, but sub-fertile. Specifically, when homozygous KO males are crossed with wild type (WT) females the resultant average litter size is reduced by approximately one third compared with those produced by WT males and females. Further, SLIRP KO mice produced significantly fewer progressively motile sperm than WT animals. Electron microscopy identified disruption of the mid-piece/annulus junction in homozygous KO sperm and altered mitochondrial morphology. In sum, our data implicates SLIRP in regulating male fertility, wherein its loss results in asthenozoospermia associated with compromised sperm structure and mitochondrial morphology.


Assuntos
Astenozoospermia/genética , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Espermatozoides/metabolismo , Animais , Astenozoospermia/metabolismo , Astenozoospermia/patologia , Núcleo Celular/genética , Feminino , Regulação da Expressão Gênica , Homozigoto , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial , Proteínas de Ligação a RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Espermatozoides/ultraestrutura , Testículo/metabolismo , Testículo/patologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...