Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 14189, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079799

RESUMO

Synaptic dysfunction and disconnectivity are core deficits in Alzheimer's disease (AD), preceding clear changes in histopathology and cognitive functioning. Here, the early and late effects of tau pathology induction on functional network connectivity were investigated in P301L mice. Multichannel EEG oscillations were used to compute (1) coherent activity between the prefrontal cortex (PFC) and hippocampus (HPC) CA1-CA3 networks; (2) phase-amplitude cross frequency coupling (PAC) between theta and gamma oscillations, which is instrumental in adequate cognitive functioning; (3) information processing as assessed by auditory evoked potentials and oscillations in the passive oddball mismatch negativity-like (MMN) paradigm. At the end, the density of tau aggregation and GABA parvalbumin (PV+) interneurons were quantified by immunohistochemistry. Early weakening of EEG theta oscillations and coherent activity were revealed between the PFC and HPC CA1 and drastic impairments in theta-gamma oscillations PAC from week 2 onwards, while PV+ interneurons count was not altered. Moreover, the tau pathology disrupted the MMN complex amplitude and evoked gamma oscillations to standard and deviant stimuli suggesting altered memory formation and recall. The induction of intracellular tau aggregation by tau seed injection results in early altered connectivity and strong theta-gamma oscillations uncoupling, which may be exploited as an early electrophysiological signature of dysfunctional neuronal networks.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Cognição , Modelos Animais de Doenças , Eletroencefalografia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
2.
Neuroscience ; 114(1): 39-53, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12207953

RESUMO

Regulator of G protein signaling (RGS) proteins are a recently identified family of proteins which dampen G protein-coupled receptor-mediated signaling by accelerating the intrinsic GTPase activity of Galpha subunits of heterotrimeric G proteins. More than 20 different RGSs have been identified and at least 10 are expressed in the CNS. The present study describes in detail the localization in the rat brain of one member of this family, RGS2. The distribution of RGS2 mRNA and protein has been studied in parallel by performing in situ hybridization and immunoautoradiography on adjacent rat brain sections. Our localization study reveals that RGS2 mRNA and protein are widely expressed in the brain. Protein and mRNA are mostly colocalized such as in neocortex, piriform cortex, caudate-putamen, septum, hippocampus, locus coeruleus. Some mismatches were also observed such as presence of mRNA but not protein in the paraventricular nucleus, the substantia nigra pars compacta and the red nucleus, suggesting that RGS2 protein is present in neuronal projections. Previous reports describing an induction of RGS2 mRNA in the rat striatum after psychostimulants (amphetamine, cocaine) led us to focus on the distribution of RGS2 in the basal ganglia circuitry. The absence of RGS2 mRNA and protein in the globus pallidus suggests that RGS2 would play its regulatory role more in the direct (striatonigral) than in the indirect (striatopallidal) striatal output pathway. In addition, to delineate the implication of RGS2 in pre- and/or postsynaptic functions in the basal ganglia, we performed lesions of the nigrostriatal pathway by 6-hydroxydopamine (6-OHDA) and striatal quinolinic acid lesions. The 6-OHDA lesion did not modify RGS2 mRNA or protein levels in the caudate-putamen whereas the intrastriatal quinolinic acid infusion caused a marked reduction of RGS2 mRNA and protein in the lesioned zone. These data indicate that RGS2 is predominantly expressed in intrinsic striatal neurons. Moreover, the absence of detectable change in RGS2 expression after injections of 6-OHDA suggests also that RGS2 is not primarily involved in the hypersensitization of postsynaptic dopamine receptors observed after lesion of the nigrostriatal pathway.


Assuntos
Encéfalo/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Proteínas RGS/metabolismo , Sistemas do Segundo Mensageiro/genética , Animais , Encéfalo/citologia , DNA Complementar/análise , DNA Complementar/genética , Dopamina/metabolismo , Masculino , Dados de Sequência Molecular , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/fisiopatologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Neurônios/citologia , Neurotoxinas/farmacologia , Oxidopamina , Ácido Quinolínico , Proteínas RGS/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/fisiopatologia , Transmissão Sináptica/genética
3.
J Pharmacol Exp Ther ; 299(2): 712-7, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11602685

RESUMO

The neurokinin 3 (NK3) receptor antagonists represent a novel class of pharmacological agents, which are currently under evaluation for the treatment of psychiatric disorders. An efficient brain penetration is one of the main prerequisites to further evaluate compounds displaying high potency to bind the NK3 receptor. The present report describes a method for determining the in vivo occupancy of central NK3 receptors after peripheral administration of drugs. An ex vivo measurement of NK3 receptor occupancy by quantitative autoradiography employing [3H]senktide as the radioligand has been developed. The speed of the method, which is usually considered low due to the time dedicated to film exposure (from weeks to months), has been considerably increased by the use of the beta-imager. The high sensitivity of this new radioimager was used to visualize and quantitatively analyze the [3H]senktide binding sites in brain sections within hours. Using this method, we have demonstrated that the reference NK3 antagonist SR142801 dose dependently occupied the NK3 receptors in the gerbil brain after subcutaneous administration with an ED50 of 0.85 mg/kg. The less active enantiomer SR142806 occupied the NK3 receptors only by 25% at the highest used dose of 10 mg/kg. These values are in accordance with the reported behavioral effects of the compounds. Our results indicate that ex vivo receptor occupancy measurements can be dependently used to predict the central activity of NK3 antagonists. More generally, the combination of ex vivo receptor autoradiography with the beta-imager detection constitutes a new and fast method to evaluate the brain penetration of drug candidates.


Assuntos
Autorradiografia/métodos , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo , Piperidinas/farmacocinética , Receptores da Neurocinina-3/antagonistas & inibidores , Substância P/análogos & derivados , Animais , Partículas beta , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Gerbillinae , Masculino , Fragmentos de Peptídeos/metabolismo , Cintilografia , Substância P/metabolismo
4.
Neuropharmacology ; 40(2): 242-53, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11114403

RESUMO

The neurokinin 3 (NK3) receptor is predominantly expressed in the central nervous system (CNS). Species differences in neurokinin 3 (NK3) receptor pharmacology have led to the preferential use of guinea pigs and gerbils in the characterization of non-peptide NK3 antagonists. Little is known about the central localization of NK3 receptors in the CNS of these species. To study this, [(3)H]senktide and [(3)H]SR 142801 were used in autoradiography experiments to visualize the NK3 receptors in the guinea pig and gerbil brain and compared to with the distribution of [(3)H]senktide binding sites in the rat brain. In the three species, the NK3 receptor was similarly distributed within the cerebral cortex, the zona incerta, the medial habenula, the amygdaloid complex, the superior colliculus and the interpeduncular nucleus. Outside of these structures, our study has revealed that each species displayed a specific distribution pattern of central NK3 receptors. The rat was the only species where NK3 receptors could be visualized in the striatum, the supraoptic nucleus and the paraventricular nucleus of the hypothalamus. The guinea pig differed mainly from the two other species by the absence of detectable binding sites in the substantia nigra pars compacta and the ventral tegmental area. A specific localization of NK3 receptors in the anterodorsal and anteroventral thalamic nuclei characterized the gerbil. This last species is also unique by in the higher level of NK3 receptors in the dorsal and median raphe nuclei. All these differences suggest that the NK3 receptor mediates different functions in different species.


Assuntos
Encéfalo/metabolismo , Receptores da Neurocinina-3/metabolismo , Substância P/análogos & derivados , Animais , Autorradiografia , Encéfalo/anatomia & histologia , Córtex Cerebral/metabolismo , Gerbillinae , Cobaias , Masculino , Membranas , Fragmentos de Peptídeos/metabolismo , Piperidinas/metabolismo , Ensaio Radioligante , Ratos , Ratos Wistar , Especificidade da Espécie , Substância P/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...