Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 270, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559080

RESUMO

BACKGROUND: Insecticide-based malaria vector control is increasingly undermined due to the development of insecticide resistance in mosquitoes. Insecticide resistance may partially be related to the use of pesticides in agriculture, while the level and mechanisms of resistance might differ between agricultural practices. The current study aimed to assess whether phenotypic insecticide resistance and associated molecular resistance mechanisms in Anopheles gambiae sensu lato differ between agricultural practices. METHODS: We collected An. gambiae s.l. larvae in six sites with three different agricultural practices, including rice, vegetable and cocoa cultivation. We then exposed the emerging adult females to discriminating concentrations of bendiocarb (0.1%), deltamethrin (0.05%), DDT (4%) and malathion (5%) using the standard World Health Organization insecticide susceptibility test. To investigate underlying molecular mechanisms of resistance, we used multiplex TaqMan qPCR assays. We determined the frequency of target-site mutations, including Vgsc-L995F/S and Vgsc-N1570Y, and Ace1-G280S. In addition, we measured the expression levels of genes previously associated with insecticide resistance in An. gambiae s.l., including the cytochrome P450-dependent monooxygenases CYP4G16, CYP6M2, CYP6P1, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, and the glutathione S-transferase GSTe2. RESULTS: The An. gambiae s.l. populations from all six agricultural sites were resistant to bendiocarb, deltamethrin and DDT, while the populations from the two vegetable cultivation sites were additionally resistant to malathion. Most tested mosquitoes carried at least one mutant Vgsc-L995F allele that is associated with pyrethroid and DDT resistance. In the cocoa cultivation sites, we observed the highest 995F frequencies (80-87%), including a majority of homozygous mutants and several in co-occurrence with the Vgsc-N1570Y mutation. We detected the Ace1 mutation most frequently in vegetable-growing sites (51-60%), at a moderate frequency in rice (20-22%) and rarely in cocoa-growing sites (3-4%). In contrast, CYP6M2, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, previously associated with metabolic insecticide resistance, showed the highest expression levels in the populations from rice-growing sites compared to the susceptible Kisumu reference strain. CONCLUSION: In our study, we observed intriguing associations between the type of agricultural practices and certain insecticide resistance profiles in the malaria vector An. gambiae s.l. which might arise from the use of pesticides deployed for protecting crops.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Feminino , Inseticidas/farmacologia , Resistência a Inseticidas/genética , DDT , Côte d'Ivoire , Malation , Mosquitos Vetores/genética , Piretrinas/farmacologia , Agricultura
2.
Malar J ; 22(1): 93, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915098

RESUMO

BACKGROUND: Knowing the species composition and insecticide resistance status of the target vector population is important to guide malaria vector control. The aim of this study was to characterize the malaria vector population in terms of species composition, insecticide susceptibility status and potential underlying resistance mechanisms in Ellibou, southern Côte d'Ivoire. METHODS: A 1-year longitudinal entomological survey was conducted using light traps and pyrethroid spray catches to sample adult mosquitoes in combination with larval sampling. The susceptibility status of Anopheles gambiae sensu lato (s.l.) to bendiocarb, deltamethrin, DDT and malathion was assessed using the World Health Organization insecticide susceptibility test. Additionally, An. gambiae specimens were screened for knockdown (kdr) and acetylcholineesterase (ace1) target site resistance alleles, and the expression levels of eight metabolic resistance genes, including seven cytochrome P450 monooxygenases (P450s) and one glutathione S-transferase (GST), measured with reverse transcription quantitative real-time polymerase chain reaction (qPCR). RESULTS: Overall, 2383 adult mosquitoes from 12 different taxa were collected with Culex quinquefasciatus and An. gambiae being the predominant taxa. Molecular identification of An. gambiae s.l. revealed the presence of Anopheles arabiensis, Anopheles coluzzii, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii/An. gambiae s.s. hybrids. Anopheles gambiae mosquitoes were resistant to all insecticides except malathion. PCR diagnostics revealed the presence of ace1-G280S and the kdr L995F, L995S and N1570Y target-site mutations. Additionally, several genes were upregulated, including five P450s (i.e., CYP6P3, CYP6M2, CYP9K1, CYP6Z1, CYP6P1) and GSTE2. CONCLUSION: This is the first documented presence of An. arabiensis in Côte d'Ivoire. Its detection - together with a recent finding further north of the country - confirms its existence in the country, which is an early warning sign, as An. arabiensis shows a different biology than the currently documented malaria vectors. Because the local An. gambiae population was still susceptible to malathion, upregulation of P450s, conferring insecticide resistance to pyrethroids, together with the presence of ace1, suggest negative cross-resistance. Therefore, organophosphates could be an alternative insecticide class for indoor residual spraying in the Ellibou area, while additional tools against the outdoor biting An. arabiensis will have to be considered.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Anopheles/genética , Malation/farmacologia , Côte d'Ivoire , Mosquitos Vetores/genética , Malária/epidemiologia
3.
PLoS Genet ; 18(2): e1009963, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143477

RESUMO

Insecticide resistance in Anopheles mosquitoes is seriously threatening the success of insecticide-based malaria vector control. Surveillance of insecticide resistance in mosquito populations and identifying the underlying mechanisms enables optimisation of vector control strategies. Here, we investigated the molecular mechanisms of insecticide resistance in three Anopheles coluzzii field populations from southern Côte d'Ivoire, including Agboville, Dabou and Tiassalé. All three populations were resistant to bendiocarb, deltamethrin and DDT, but not or only very weakly resistant to malathion. The absence of malathion resistance is an unexpected result because we found the acetylcholinesterase mutation Ace1-G280S at high frequencies, which would typically confer cross-resistance to carbamates and organophosphates, including malathion. Notably, Tiassalé was the most susceptible population to malathion while being the most resistant one to the pyrethroid deltamethrin. The resistance ratio to deltamethrin between Tiassalé and the laboratory reference colony was 1,800 fold. By sequencing the transcriptome of individual mosquitoes, we found numerous cytochrome P450-dependent monooxygenases - including CYP6M2, CYP6P2, CYP6P3, CYP6P4 and CYP6P5 - overexpressed in all three field populations. This could be an indication for negative cross-resistance caused by overexpression of pyrethroid-detoxifying cytochrome P450s that may activate pro-insecticides, thereby increasing malathion susceptibility. In addition to the P450s, we found several overexpressed carboxylesterases, glutathione S-transferases and other candidates putatively involved in insecticide resistance.


Assuntos
Anopheles/genética , Resistência a Inseticidas/genética , Malation/farmacologia , Acetilcolinesterase/genética , Animais , Anopheles/efeitos dos fármacos , Côte d'Ivoire/epidemiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Malation/metabolismo , Oxigenases de Função Mista/genética , Controle de Mosquitos , Mosquitos Vetores/genética , Mutação Puntual , Transcriptoma/genética
4.
One Health ; 10: 100158, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32844109

RESUMO

Today, the world counts millions of refugees but only a fraction of them have access to higher education. Despite the multiple public health problems in refugee camps and the need to build local capacities to prevent and combat them, University level courses in public health are largely unavailable for refugees. This paper describes the development, implementation and evaluation of an innovative two-module blended-learning programme on One Health in Kakuma refugee camp (Kenya). This programme combines: (I) Interdisciplinary and multi-expert MOOC on "Global Health at the Human-Animal-Ecosystem interface"; (II) peer-to-peer learning involving students from University of Geneva Master of science in Global Health and research collaborations around specific and locally-relevant problems; (III) online mentoring and lecturing by experts from the Institute of Global Health of the University of Geneva in Kakuma. A total of 67 refugees applied to Module 1; 15 started the Module 1 in October 2017, of these 14 completed it and 6 passed the exams, finally five students started the Module 2 in October 2018 which they all passed in February 2019. Five student-led collaborative projects were developed focusing on the conception of a community-based monitoring system for prevalent diseases in the camp. With such a pedagogic approach, the programme provides an overview on Global Health challenges at the human-animal-ecosystem interface and the importance of the One Health approach, and introduces students to scientific research through interdisciplinary and international collaborations and innovation. The high number of applicants and positive feedback from students in Kakuma show the interest in One Health education in the camp. This learning experience ultimately aims at building local knowledge and capacity fostering "One Health" champions to reinforce local and national health system. This framework for One Health education could be potentially scaled up to other camps in Africa and the world.

5.
Parasit Vectors ; 12(1): 554, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753035

RESUMO

BACKGROUND: The threat of mosquito-borne diseases is increasing in continental Europe as demonstrated by several autochthonous chikungunya, dengue and West Nile virus outbreaks. In Switzerland, despite the presence of competent vectors, routine surveillance of arboviruses in mosquitoes is not being carried out, mainly due to the high costs associated with the need of a constant cold chain and laborious processing of thousands of mosquitoes. An alternative approach is using honey-baited nucleic acid preserving cards (FTA cards) to collect mosquito saliva that may be analysed for arboviruses. Here, we evaluate whether FTA cards could be used to detect potentially emerging viruses in an area of low virus prevalence in combination with an effective mosquito trap. METHODS: In a field trial in southern Switzerland we measured side-by-side the efficacy of the BG-Sentinel 2, the BG-GAT and the Box gravid trap to catch Aedes and Culex mosquitoes in combination with honey-baited FTA cards during 80 trapping sessions of 48 hours. We then screened both the mosquitoes and the FTA cards for the presence of arboviruses using reverse-transcription PCR. The efficacy of the compared trap types was evaluated using generalized linear mixed models. RESULTS: The Box gravid trap collected over 11 times more mosquitoes than the BG-GAT and BG-Sentinel 2 trap. On average 75.9% of the specimens fed on the honey-bait with no significant difference in feeding rates between the three trap types. From the total of 1401 collected mosquitoes, we screened 507 Aedes and 500 Culex females for the presence of arboviruses. A pool of six Cx. pipiens/Cx. torrentium mosquitoes and also the FTA card from the same Box gravid trap were positive for Usutu virus. Remarkably, only two of the six Culex mosquitoes fed on the honey-bait, emphasising the high sensitivity of the method. In addition, two Ae. albopictus collections but no FTA cards were positive for mosquito-only flaviviruses. CONCLUSIONS: Based on our results we conclude that honey-baited FTA cards, in combination with the Box gravid trap, are an effective method for arbovirus surveillance in areas of low prevalence, particularly where resources are limited for preservation and screening of individual mosquitoes.


Assuntos
Aedes/virologia , Arbovírus/isolamento & purificação , Culex/virologia , Entomologia/métodos , Técnicas de Diagnóstico Molecular/métodos , Mosquitos Vetores/virologia , Animais , Arbovírus/genética , Mel , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...