Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268859

RESUMO

For proton exchange membrane water electrolysis (PEMWE) to become competitive, the cost of stack components, such as bipolar plates (BPP), needs to be reduced. This can be achieved by using coated low-cost materials, such as copper as alternative to titanium. Herein we report on highly corrosion-resistant copper BPP coated with niobium. All investigated samples showed excellent corrosion resistance properties, with corrosion currents lower than 0.1 µA cm-2 in a simulated PEM electrolyzer environment at two different pH values. The physico-chemical properties of the Nb coatings are thoroughly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). A 30 µm thick Nb coating fully protects the Cu against corrosion due to the formation of a passive oxide layer on its surface, predominantly composed of Nb2O5. The thickness of the passive oxide layer determined by both EIS and XPS is in the range of 10 nm. The results reported here demonstrate the effectiveness of Nb for protecting Cu against corrosion, opening the possibility to use it for the manufacturing of BPP for PEMWE. The latter was confirmed by its successful implementation in a single cell PEMWE based on hydraulic compression technology.

2.
Angew Chem Int Ed Engl ; 56(42): 12958-12961, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28816388

RESUMO

We have gained new insight into the so-called hydrophobic gap, a molecularly thin region of decreased electron density at the interface between water and a solid hydrophobic surface, by X-ray reflectivity experiments and molecular dynamics simulations at different hydrostatic pressures. Pressure variations show that the hydrophobic gap persists up to a pressure of 5 kbar. The electron depletion in the interfacial region strongly decreases with an increase in pressure, indicating that the interfacial region is compressed more strongly than bulk water. The decrease is most significant up to 2 kbar; beyond that, the pressure response of the depletion is less pronounced.

3.
Langmuir ; 32(11): 2638-43, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26927365

RESUMO

In this work, the structure of solid-supported lipid multilayers exposed to increased hydrostatic pressure was studied in situ by X-ray reflectometry at the solid-liquid interface between silicon and an aqueous buffer solution. The layers' vertical structure was analyzed up to a maximum pressure of 4500 bar. The multilayers showed phase transitions from the fluid into different gel phases. With increasing pressure, a gradual filling of the sublayers between the hydrophilic head groups with water was observed. This process was inverted when the pressure was decreased, yielding finally smaller water layers than those in the initial state. As is commonly known, water has an abrasive effect on lipid multilayers by the formation of vesicles. We show that increasing pressure can reverse this process so that a controlled switching between multi- and bilayers is possible.


Assuntos
Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Pressão Hidrostática , Transição de Fase , Silício , Água/química
4.
Langmuir ; 30(8): 2077-83, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24559398

RESUMO

The heat-induced desorption and adsorption of the proteins lysozyme, ribonuclease A, bovine serum albumin, and fibronectin at protein layers was investigated in two different environments: pure buffer and protein solution. Using two different environments allows us to distinguish between thermodynamic and kinetic mechanisms in the adsorption process. We observed a desorption in buffer and an adsorption in protein solution, depending upon protein properties, such as size, stability, and charge. We conclude that the desorption in buffer is mainly influenced by the mobility of the proteins at the interface, while the adsorption in protein solution is driven by conformational changes and, thereby, a gain in entropy. These results are relevant for controlling biofilm formation at solid-liquid interfaces.


Assuntos
Membranas Artificiais , Muramidase/química , Ribonuclease Pancreático/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos
5.
J Synchrotron Radiat ; 21(Pt 1): 76-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365919

RESUMO

A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.


Assuntos
Pressão Hidrostática , Raios X , Muramidase/química , Propriedades de Superfície
6.
Biophys J ; 102(11): 2641-8, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22713580

RESUMO

Understanding the intermolecular interaction potential, V(r), of proteins under the influence of temperature, pressure, and salt concentration is essential for understanding protein aggregation, crystallization, and protein phase behavior in general. Here, we report small-angle x-ray scattering studies on dense lysozyme solutions of high ionic strength as a function of temperature and pressure. We show that the interaction potential changes in a nonlinear fashion over a wide range of temperatures, salt, and protein concentrations. Neither temperature nor protein and salt concentration lead to marked changes in the pressure dependence of V(r), indicating that changes of the water structure dominate the pressure dependence of the intermolecular forces. Furthermore, by analysis of the temperature, pressure, and ionic strength dependence of the normalized second virial coefficient, b2, we show that the interaction can be fine-tuned by pressure, which can be used to optimize b2 values for controlled protein crystallization.


Assuntos
Muramidase/química , Muramidase/metabolismo , Dinâmica não Linear , Pressão , Temperatura , Animais , Galinhas , Cristalização , Concentração Osmolar , Ligação Proteica/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Cloreto de Sódio/farmacologia , Soluções , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...