Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 14(9): 3900-11, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26215788

RESUMO

Besides their role as powerhouses, mitochondria play a pivotal role in the spatial organization of numerous enzymatic functions. They are connected to the ER, and many pathways are organized through the mitochondrial membranes. Thus, the precise definition of mitochondrial proteomes remains a challenging task. Here, we have established a proteomic strategy to accurately determine the mitochondrial localization of proteins from the fungal model organism Neurospora crassa. This strategy relies on both highly pure mitochondria as well as the quantitative monitoring of mitochondrial components along their consecutive enrichment. Pure intact mitochondria were obtained by a multistep approach combining differential and density Percoll (ultra) centrifugations. When compared with three other intermediate enrichment stages, peptide sequencing and quantitative profiling of pure mitochondrial fractions revealed prototypic regulatory profiles of per se mitochondrial components. These regulatory profiles constitute a distinct cluster defining the mitochondrial compartment and support linear discriminant analyses, which rationalized the annotation process. In total, this approach experimentally validated the mitochondrial localization of 512 proteins including 57 proteins that had not been reported for N. crassa before.


Assuntos
Proteínas Fúngicas/análise , Proteínas Mitocondriais/análise , Neurospora crassa/química , Neurospora crassa/citologia , Proteômica/métodos , Análise Discriminante , Proteínas Fúngicas/química , Proteínas Mitocondriais/química
2.
Fungal Genet Biol ; 66: 69-78, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24569084

RESUMO

Molybdenum (Mo) is a trace element that is essential for important cellular processes. To gain biological activity, Mo must be complexed in the molybdenum cofactor (Moco), a pterin derivative of low molecular weight. Moco synthesis is a multi-step pathway that involves a variable number of genes in eukaryotes, which are assigned to four steps of eukaryotic Moco biosynthesis. Moco biosynthesis mutants lack any Moco-dependent enzymatic activities, including assimilation of nitrate (plants and fungi), detoxification of sulfite (humans and plants) and utilization of hypoxanthine as sole N-source (fungi). We report the first comprehensive genetic characterization of the Neurospora crassa (N. crassa) Moco biosynthesis pathway, annotating five genes which encode all pathway enzymes, and compare it with the characterized Aspergillus nidulans pathway. Biochemical characterization of the corresponding knock-out mutants confirms our annotation model, documenting the N. crassa/A. nidulans (fungal) Moco biosynthesis as unique, combining the organizational structure of both plant and human Moco biosynthesis genes.


Assuntos
Aspergillus nidulans/genética , Coenzimas/biossíntese , Proteínas Fúngicas/genética , Metaloproteínas/biossíntese , Molibdênio/metabolismo , Neurospora crassa/genética , Aspergillus nidulans/metabolismo , Coenzimas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Genes Fúngicos , Humanos , Metaloproteínas/genética , Cofatores de Molibdênio , Mutação , Neurospora crassa/metabolismo , Pteridinas
3.
Anal Biochem ; 408(2): 220-5, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20869941

RESUMO

Precise annotation of time and spatial distribution of enzymes involved in plant secondary metabolism by gel electrophoresis are usually difficult due to their low abundance. Therefore, effective methods to enrich these enzymes are required to correlate available transcript and metabolite data with the actual presence of active enzymes in wild-type and mutant plants or to monitor variations of these enzymes under various types of biotic and abiotic stress conditions. S-Adenosyl-L-methionine-dependent O-methyltransferases play important roles in the modification of natural products such as phenylpropanoids or alkaloids. In plants they occur as small superfamilies with defined roles for each of its members in different organs and tissues. We explored the use of S-adenosyl-L-homocysteine as a selectivity function in affinity-based protein profiling supported by capture compound mass spectrometry. Due to their high affinity to this ligand it was possible to identify developmental changes of flower-specific patterns of plant natural product O-methyltransferases and corroborate the absence of individual O-methyltransferases in the corresponding Arabidopsis knockout lines. Developmental changes in the OMT pattern were correlated with transcript data obtained by qPCR.


Assuntos
Arabidopsis/enzimologia , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metiltransferases/química , Eletroforese em Gel de Poliacrilamida/métodos , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Peptídeos/análise , S-Adenosil-Homocisteína/química , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...