Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cancer Res ; 84(11): 1739-1741, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831749

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a classical cellular plasticity process induced by various cell-intrinsic and -extrinsic triggers. Although prominent factors, such as TGFß, mediate EMT via well-characterized pathways, alternative avenues are less well understood. Transcriptomic subtyping of pancreatic ductal adenocarcinoma (PDAC) has demonstrated that basal-like PDACs enrich a mesenchymal-like expression program, emphasizing the relevance of EMT in the disease. In this issue of Cancer Research, Brown and colleagues demonstrate the tight connection of EMT to hypoxia. Through a detailed mechanistic analysis, the authors deciphered that hypoxia-induced signals are integrated by the histone H3 lysine 36 di-methylation (H3K36me2) mark. On the one hand, hypoxia decreased activity of the H3K36me2 eraser KDM2A, while on the other hand promoting stabilization of the H3K36me2 writer NSD2. Hypoxia diminished the expression of a set of serine-threonine phosphatases, subsequently resulting in SRC kinase family-dependent activation of canonical MEK, ERK, and JNK signaling to impinge on NSD2 expression. In addition, reduced expression of the protein phosphatase PP2Cδ was linked to increased NSD2 protein expression. These discoveries illuminate the close relationship of hypoxia signaling to the epigenetic machinery and cellular plasticity processes. See related article by Brown et al., p. 1764.


Assuntos
Carcinoma Ductal Pancreático , Epigênese Genética , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Transição Epitelial-Mesenquimal/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Histonas/metabolismo , Histonas/genética , Regulação Neoplásica da Expressão Gênica
2.
Adv Sci (Weinh) ; : e2307695, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885414

RESUMO

Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.

5.
Nat Commun ; 14(1): 8121, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065954

RESUMO

Ribosome biogenesis is a multi-step process, in which a network of trans-acting factors ensures the coordinated assembly of pre-ribosomal particles in order to generate functional ribosomes. Ribosome biogenesis is tightly coordinated with cell proliferation and its perturbation activates a p53-dependent cell-cycle checkpoint. How p53-independent signalling networks connect impaired ribosome biogenesis to the cell-cycle machinery has remained largely enigmatic. We demonstrate that inactivation of the nucleolar SUMO isopeptidases SENP3 and SENP5 disturbs distinct steps of 40S and 60S ribosomal subunit assembly pathways, thereby triggering the canonical p53-dependent impaired ribosome biogenesis checkpoint. However, inactivation of SENP3 or SENP5 also induces a p53-independent checkpoint that converges on the specific downregulation of the key cell-cycle regulator CDK6. We further reveal that impaired ribosome biogenesis generally triggers the downregulation of CDK6, independent of the cellular p53 status. Altogether, these data define the role of SUMO signalling in ribosome biogenesis and unveil a p53-independent checkpoint of impaired ribosome biogenesis.


Assuntos
Cisteína Endopeptidases , Ribossomos , Proteína Supressora de Tumor p53 , Nucléolo Celular/metabolismo , Proliferação de Células , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Humanos , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
7.
Cancers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509312

RESUMO

Epigenetic modifiers of the histone deacetylase (HDAC) family are often dysregulated in cancer cells. Experiments with small molecule HDAC inhibitors (HDACi) have proven that HDACs are a vulnerability of transformed cells. We evaluated a novel hydroxamic acid-based HDACi (KH16; termed yanostat) in human pancreatic ductal adenocarcinoma (PDAC) cells, short- and long-term cultured colorectal cancer (CRC) cells, and retinal pigment epithelial cells. We show that KH16 induces cell cycle arrest and apoptosis, both time and dose dependently in PDAC and CRC cells. This is associated with altered expression of BCL2 family members controlling intrinsic apoptosis. Recent data illustrate that PDAC cells frequently have an altered expression of the pro-apoptotic BH3-only protein NOXA and that HDACi induce an accumulation of NOXA. Using PDAC cells with a deletion of NOXA by CRISPR-Cas9, we found that a lack of NOXA delayed apoptosis induction by KH16. These results suggest that KH16 is a new chemotype of hydroxamic acid HDACi with superior activity against solid tumor-derived cells. Thus, KH16 is a scaffold for future research on compounds with nanomolar activity against HDACs.

8.
EMBO Mol Med ; 15(9): e16431, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37485814

RESUMO

The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma.


Assuntos
Dano ao DNA , Linfoma de Células B , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Linfócitos B , Reparo do DNA , Linfoma de Células B/genética
9.
Methods Mol Biol ; 2589: 429-454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255641

RESUMO

Epigenetic alterations have been identified in various tumor types. In part, these alterations are mediated via increased histone deacetylase activity. Although preclinical results of monotherapies with histone deacetylase inhibitors (HDACi) are promising, success in clinical trials is limited. Reasons for these limitations may be de novo or acquired resistance to HDAC inhibitors that could be overcome with rational combination therapies. This requires knowledge of resistance mechanism along with the involved genetic networks. One way to identify such genetic networks is the implementation of a CRISPR-based technology allowing transcriptional repression (CRISPRi) and activation (CRISPRa) at a genome-wide scale. We describe a simple approach to amplify and validate sgRNA libraries, generate a myeloid progenitor cell line expressing catalytically dead Cas9 (dCas9) fusion proteins with transcriptional effectors to repress or activate genetic regions of interest and demonstrate a complementary genome-wide HDACi resistance screening approach. Furthermore, we present bioinformatics tools for quality control and analysis of the sequencing data.


Assuntos
Redes Reguladoras de Genes , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Proteína 9 Associada à CRISPR , Expressão Gênica , Histona Desacetilases/genética , Sistemas CRISPR-Cas
10.
Haematologica ; 108(2): 555-567, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36134453

RESUMO

Aberrant activity of the SUMOylation pathway has been associated with MYC overexpression and poor prognosis in aggressive B-cell lymphoma (BCL) and other malignancies. Recently developed small-molecule inhibitors of SUMOylation (SUMOi) target the heterodimeric E1 SUMO activation complex (SAE1/UBA2). Here, we report that activated MYC signaling is an actionable molecular vulnerability in vitro and in a preclinical murine in vivo model of MYC-driven BCL. While SUMOi conferred direct effects on MYC-driven lymphoma cells, SUMO inhibition also resulted in substantial remodeling of various subsets of the innate and specific immunity in vivo. Specifically, SUMOi increased the number of memory B cells as well as cytotoxic and memory T cells, subsets that are attributed a key role within a coordinated anti-tumor immune response. In summary, our data constitute pharmacologic SUMOi as a powerful therapy in a subset of BCL causing massive remodeling of the normal B-cell and T-cell compartment.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Linfoma/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Biomarcadores , Enzimas Ativadoras de Ubiquitina/metabolismo
11.
Blood Adv ; 7(4): 469-481, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35917568

RESUMO

Proteasome inhibition is a highly effective treatment for multiple myeloma (MM). However, virtually all patients develop proteasome inhibitor resistance, which is associated with a poor prognosis. Hyperactive small ubiquitin-like modifier (SUMO) signaling is involved in both cancer pathogenesis and cancer progression. A state of increased SUMOylation has been associated with aggressive cancer biology. We found that relapsed/refractory MM is characterized by a SUMO-high state, and high expression of the SUMO E1-activating enzyme (SAE1/UBA2) is associated with poor overall survival. Consistently, continuous treatment of MM cell lines with carfilzomib (CFZ) enhanced SUMO pathway activity. Treatment of MM cell lines with the SUMO E1-activating enzyme inhibitor subasumstat (TAK-981) showed synergy with CFZ in both CFZ-sensitive and CFZ-resistant MM cell lines, irrespective of the TP53 state. Combination therapy was effective in primary MM cells and in 2 murine MM xenograft models. Mechanistically, combination treatment with subasumstat and CFZ enhanced genotoxic and proteotoxic stress, and induced apoptosis was associated with activity of the prolyl isomerase PIN1. In summary, our findings reveal activated SUMOylation as a therapeutic target in MM and point to combined SUMO/proteasome inhibition as a novel and potent strategy for the treatment of proteasome inhibitor-resistant MM.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Animais , Camundongos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Sumoilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose , Enzimas Ativadoras de Ubiquitina/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia
12.
Cell Mol Life Sci ; 80(1): 12, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534167

RESUMO

Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-fos , Animais , Camundongos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Pancreáticas
13.
EMBO J ; 41(20): e110871, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36059274

RESUMO

Deubiquitylases (DUBs) are therapeutically amenable components of the ubiquitin machinery that stabilize substrate proteins. Their inhibition can destabilize oncoproteins that may otherwise be undruggable. Here, we screened for DUB vulnerabilities in multiple myeloma, an incurable malignancy with dependency on the ubiquitin proteasome system and identified OTUD6B as an oncogene that drives the G1/S-transition. LIN28B, a suppressor of microRNA biogenesis, is specified as a bona fide cell cycle-specific substrate of OTUD6B. Stabilization of LIN28B drives MYC expression at G1/S, which in turn allows for rapid S-phase entry. Silencing OTUD6B or LIN28B inhibits multiple myeloma outgrowth in vivo and high OTUD6B expression evolves in patients that progress to symptomatic multiple myeloma and results in an adverse outcome of the disease. Thus, we link proteolytic ubiquitylation with post-transcriptional regulation and nominate OTUD6B as a potential mediator of the MGUS-multiple myeloma transition, a central regulator of MYC, and an actionable vulnerability in multiple myeloma and other tumors with an activated OTUD6B-LIN28B axis.


Assuntos
Endopeptidases , MicroRNAs , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Proteínas de Ligação a RNA , Ciclo Celular , Linhagem Celular Tumoral , Endopeptidases/genética , Humanos , MicroRNAs/genética , Mieloma Múltiplo/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA/genética , Ubiquitinas/metabolismo
14.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499080

RESUMO

Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell-mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell-mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies.


Assuntos
Apresentação de Antígeno , Neoplasias , Antígenos de Histocompatibilidade Classe I , Humanos , Evasão da Resposta Imune , Neoplasias/patologia , Sumoilação
15.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439169

RESUMO

Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway, creating an urgent need for novel therapeutic targets. To unbiasedly find MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines. Here, we found that protein arginine N-methyltransferase 5 (PRMT5) inhibitors triggered an MYC-associated dependency. In human and murine PDACs, a robust connection of MYC and PRMT5 was detected. By the use of gain- and loss-of-function models, we confirmed the increased efficacy of PRMT5 inhibitors in MYC-deregulated PDACs. Although inhibition of PRMT5 was inducing DNA damage and arresting PDAC cells in the G2/M phase of the cell cycle, apoptotic cell death was executed predominantly in cells with high MYC expression. Experiments in primary patient-derived PDAC models demonstrated the existence of a highly PRMT5 inhibitor-sensitive subtype. Our work suggests developing PRMT5 inhibitor-based therapies for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pancreáticas
17.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197278

RESUMO

Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFß/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.


Assuntos
Apoptose/genética , Carcinoma Ductal Pancreático/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Expressão Gênica , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Mutações Sintéticas Letais , Carcinoma Ductal Pancreático/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Humanos , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Regulação para Cima
18.
Nat Commun ; 13(1): 281, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022408

RESUMO

SUMOylation is a post-translational modification of proteins that regulates these proteins' localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Mutação , Sumoilação/fisiologia , Animais , Biomarcadores Tumorais , Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Cromatina , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Instabilidade Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Sumoilação/efeitos dos fármacos , Sumoilação/genética , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Bioorg Chem ; 119: 105505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838332

RESUMO

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Talidomida/farmacologia , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/química , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...