Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 109, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263173

RESUMO

Sustainable weed management strategies are critical to feeding the world's population while preserving ecosystems and biodiversity. Therefore, site-specific weed control strategies based on automation are needed to reduce the additional time and effort required for weeding. Machine vision-based methods appear to be a promising approach for weed detection, but require high quality data on the species in a specific agricultural area. Here we present a dataset, the Moving Fields Weed Dataset (MFWD), which captures the growth of 28 weed species commonly found in sorghum and maize fields in Germany. A total of 94,321 images were acquired in a fully automated, high-throughput phenotyping facility to track over 5,000 individual plants at high spatial and temporal resolution. A rich set of manually curated ground truth information is also provided, which can be used not only for plant species classification, object detection and instance segmentation tasks, but also for multiple object tracking.

2.
Plant Methods ; 19(1): 87, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608384

RESUMO

BACKGROUND: Efficient and site-specific weed management is a critical step in many agricultural tasks. Image captures from drones and modern machine learning based computer vision methods can be used to assess weed infestation in agricultural fields more efficiently. However, the image quality of the captures can be affected by several factors, including motion blur. Image captures can be blurred because the drone moves during the image capturing process, e.g. due to wind pressure or camera settings. These influences complicate the annotation of training and test samples and can also lead to reduced predictive power in segmentation and classification tasks. RESULTS: In this study, we propose DeBlurWeedSeg, a combined deblurring and segmentation model for weed and crop segmentation in motion blurred images. For this purpose, we first collected a new dataset of matching sharp and naturally blurred image pairs of real sorghum and weed plants from drone images of the same agricultural field. The data was used to train and evaluate the performance of DeBlurWeedSeg on both sharp and blurred images of a hold-out test-set. We show that DeBlurWeedSeg outperforms a standard segmentation model that does not include an integrated deblurring step, with a relative improvement of [Formula: see text] in terms of the Sørensen-Dice coefficient. CONCLUSION: Our combined deblurring and segmentation model DeBlurWeedSeg is able to accurately segment weeds from sorghum and background, in both sharp as well as motion blurred drone captures. This has high practical implications, as lower error rates in weed and crop segmentation could lead to better weed control, e.g. when using robots for mechanical weed removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...