Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 54(12): 2188-2195, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35941517

RESUMO

PURPOSE: Muscle anatomical cross-sectional area (ACSA) can be assessed using ultrasound and images are usually evaluated manually. Here, we present DeepACSA, a deep learning approach to automatically segment ACSA in panoramic ultrasound images of the human rectus femoris (RF), vastus lateralis (VL), gastrocnemius medialis (GM) and lateralis (GL) muscles. METHODS: We trained three muscle-specific convolutional neural networks (CNN) using 1772 ultrasound images from 153 participants (age = 38.2 yr, range = 13-78). Images were acquired in 10% increments from 30% to 70% of femur length for RF and VL and at 30% and 50% of muscle length for GM and GL. During training, CNN performance was evaluated using intersection-over-union scores. We compared the performance of DeepACSA to manual analysis and a semiautomated algorithm using an unseen test set. RESULTS: Comparing DeepACSA analysis of the RF to manual analysis with erroneous predictions removed (3.3%) resulted in intraclass correlation (ICC) of 0.989 (95% confidence interval = 0.983-0.992), mean difference of 0.20 cm 2 (0.10-0.30), and SEM of 0.33 cm 2 (0.26-0.41). For the VL, ICC was 0.97 (0.96-0.968), mean difference was 0.85 cm 2 (-0.4 to 1.31), and SEM was 0.92 cm 2 (0.73-1.09) after removal of erroneous predictions (7.7%). After removal of erroneous predictions (12.3%), GM/GL muscles demonstrated an ICC of 0.98 (0.96-0.99), a mean difference of 0.43 cm 2 (0.21-0.65), and an SEM of 0.41 cm 2 (0.29-0.51). Analysis duration was 4.0 ± 0.43 s (mean ± SD) for analysis of one image in our test set using DeepACSA. CONCLUSIONS: DeepACSA provides fast and objective segmentation of lower limb panoramic ultrasound images comparable with manual segmentation. Inaccurate model predictions occurred predominantly on low-quality images, highlighting the importance of high-quality image for accurate prediction.


Assuntos
Aprendizado Profundo , Humanos , Adulto , Ultrassonografia/métodos , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
2.
Sci Rep ; 11(1): 13042, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158572

RESUMO

Open-access scripts to perform muscle anatomical cross-sectional area (ACSA) evaluation in ultrasound images are currently unavailable. This study presents a novel semi-automatic ImageJ script (named "ACSAuto") for quantifying the ACSA of lower limb muscles. We compared manual ACSA measurements from 180 ultrasound scans of vastus lateralis (VL) and rectus femoris (RF) muscles to measurements assessed by the ACSAuto script. We investigated inter- and intra-investigator reliability of the script. Consecutive-pairwise intra-class correlations (ICC) and standard error of measurement (SEM) with 95% compatibility interval were calculated. Bland-Altman analyses were employed to test the agreement between measurements. Comparing manual and ACSAuto measurements, ICCs and SEMs ranged from 0.96 to 0.999 and 0.12 to 0.96 cm2 (1.2-5.9%) and mean bias was smaller than 0.5 cm2 (4.3%). Inter-investigator comparison revealed ICCs, SEMs and mean bias ranging from 0.85 to 0.999, 0.07 to 1.16 cm2 (0.9-7.6%) and - 0.16 to 0.66 cm2 (- 0.6 to 3.2%). Intra-investigator comparison revealed ICCs, SEMs and mean bias between 0.883-0.998, 0.07-0.93 cm2 (1.1-7.6%) and - 0.80 to 0.15 cm2 (- 3.4 to 1.8%). Image quality needs to be high for efficient and accurate ACSAuto analyses. Taken together, the ACSAuto script represents a reliable tool to measure RF and VL ACSA, is comparable to manual analysis and can reduce time needed to evaluate ultrasound images.


Assuntos
Processamento de Imagem Assistida por Computador , Músculo Quadríceps/diagnóstico por imagem , Software , Ultrassonografia , Automação , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...