Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 237: 109692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884203

RESUMO

Bacterial keratitis is a vision-threatening infection of the cornea that is typically treated with antibiotics. However, antibiotics sometimes fail to eradicate the infection and do not prevent or repair the damage caused directly by the bacteria or the host immune response to the infection. Our group previously demonstrated that treatment of Pseudomonas aeruginosa keratitis in rabbits with innovative cold atmospheric plasma (iCAP) resulted in reduced edema, ulcer formation, and bacterial load. In this study, we investigated the efficacy of iCAP treatment in methicillin-resistant Staphylococcus aureus (MRSA). New Zealand white rabbits were infected intrastromally with MRSA then treated with iCAP, moxifloxacin, vancomycin, or combination of iCAP with each antibiotic to assess the safety and efficacy of iCAP treatment compared to untreated controls and antibiotics. iCAP treatment significantly reduced bacterial loads and inflammation, improved anterior chamber clarity, and prevented corneal ulceration compared to untreated controls and antibiotic treatment. Safety assessments of grimace test scores and tear production showed that iCAP was not significantly different from either antibiotic treatment in terms of distress or tear production. Combination iCAP/antibiotic treatment did not appear to provide significant added benefit over iCAP alone. Our findings suggest that the addition of iCAP may be a viable tool in reducing damage to the cornea and anterior chamber of the eye following S. aureus keratitis.


Assuntos
Úlcera da Córnea , Infecções Oculares Bacterianas , Ceratite , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Coelhos , Animais , Úlcera da Córnea/tratamento farmacológico , Úlcera da Córnea/microbiologia , Carga Bacteriana , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Ceratite/tratamento farmacológico , Ceratite/prevenção & controle , Ceratite/microbiologia , Antibacterianos/uso terapêutico , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções Oculares Bacterianas/prevenção & controle , Infecções Oculares Bacterianas/microbiologia
2.
Front Plant Sci ; 12: 725571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691104

RESUMO

Phytophthora sojae is an oomycete that causes stem and root rot disease in soybean. P. sojae delivers many RxLR effector proteins, including Avr1b, into host cells to promote infection. We show here that Avr1b interacts with the soybean U-box protein, GmPUB1-1, in yeast two-hybrid, pull down, and bimolecular fluorescence complementation (BIFC) assays. GmPUB1-1, and a homeologous copy GmPUB1-2, are induced by infection and encode 403 amino acid proteins with U-Box domains at their N-termini. Non-synonymous mutations in the Avr1b C-terminus that abolish suppression of cell death also abolished the interaction of Avr1b with GmPUB1-1, while deletion of the GmPUB1-1 C-terminus, but not the U box, abolished the interaction. BIFC experiments suggested that the GmPUB1-1-Avr1b complex is targeted to the nucleus. In vitro ubiquitination assays demonstrated that GmPUB1-1 possesses E3 ligase activity. Silencing of the GmPUB1 genes in soybean cotyledons resulted in loss of recognition of Avr1b by gene products encoded by Rps1-b and Rps1-k. The recognition of Avr1k (which did not interact with GmPUB1-1) by Rps1-k plants was not, however, affected following GmPUB1-1 silencing. Furthermore, over-expression of GmPUB1-1 in particle bombardment experiments triggered cell death suggesting that GmPUB1 may be a positive regulator of effector-triggered immunity. In a yeast two-hybrid system, GmPUB1-1 also interacted with a number of other RxLR effectors including Avr1d, while Avr1b and Avr1d interacted with a number of other infection-induced GmPUB proteins, suggesting that the pathogen uses a multiplex of interactions of RxLR effectors with GmPUB proteins to modulate host immunity.

3.
Front Plant Sci ; 10: 636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396242

RESUMO

Tethering of the plasma membrane (PM) and many organelles to the endoplasmic reticulum (ER) for communication and lipid exchange has been widely reported. However, despite growing interest in multi-vesicular bodies (MVBs) as possible sources of exosomes, tethering of MVBs to the PM has not been reported. Here we show that MVBs and the vacuolar membrane (tonoplast) could be tethered to the PM (PM-MVB/TP tethering) by artificial protein fusions or bimolecular fluorescence complementation (BiFC) complexes that contain a peripheral membrane protein that binds the PM and also a protein that binds MVBs or the tonoplast. PM-binding proteins capable of participating in PM-MVB/TP tethering included StRem1.3, BIK1, PBS1, CPK21, and the PtdIns(4)-binding proteins FAPP1 and Osh2. MVB/TP-binding proteins capable of participating in tethering included ARA6, ARA7, RHA1, RABG3f, and the PtdIns(3)P-binding proteins Vam7p and Hrs-2xFYVE. BiFC complexes or protein fusions capable of producing PM-MVB/TP tethering were visualized as large well-defined patches of fluorescence on the PM that could displace PM proteins such as AtFlotillin1 and also could displace cytoplasmic proteins such as soluble GFP. Furthermore, we identified paralogous ubiquitin E3 ligase proteins, SAUL1 (AtPUB44), and AtPUB43 that could produce PM-MVB/TP tethering. SAUL1 and AtPUB43 could produce tethering in uninfected tissue when paired with MVB-binding proteins or when their E3 ligase domain was deleted. When Nicotiana benthamiana leaf tissue was infected with Phytophthora capsici, full length SAUL1 and AtPUB43 localized in membrane patches consistent with PM-MVB/TP tethering. Our findings define new tools for studying PM-MVB/TP tethering and its possible role in plant defense. SIGNIFICANCE STATEMENT: Although not previously observed, the tethering of multi-vesicular bodies to the plasma membrane is of interest due to the potential role of this process in producing exosomes in plants. Here we describe tools for observing and manipulating the tethering of multi-vesicular bodies and the tonoplast to the plant plasma membrane, and describe two plant proteins that may naturally regulate this process during infection.

4.
Microb Pathog ; 59-60: 19-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23583291

RESUMO

Coccidioides is the causative agent of a potentially life-threatening respiratory disease of humans. A feature of this mycosis is that pH measurements of the microenvironment of pulmonary abscesses are consistently alkaline due to ammonia production during the parasitic cycle. We previously showed that enzymatically active urease is partly responsible for elevated concentrations of extracellular ammonia at sites of lung infection and contributes to both localized host tissue damage and exacerbation of the respiratory disease in BALB/c mice. Disruption of the urease gene (URE) of Coccidioides posadasii only partially reduced the amount of ammonia detected during in vitro growth of the parasitic phase, suggesting that other ammonia-producing pathways exist that may also contribute to the virulence of this pathogen. Ureidoglycolate hydrolase (Ugh) expressed by bacteria, fungi and higher plants catalyzes the hydrolysis of ureidoglycolate to yield glyoxylate and the release CO2 and ammonia. This enzymatic pathway is absent in mice and humans. Ureidoglycolate hydrolase gene deletions were conducted in a wild type (WT) isolate of C. posadasii as well as the previously generated Δure knock-out strain. Restorations of UGH in the mutant stains were performed to generate and evaluate the respective revertants. The double mutant revealed a marked decrease in the amount of extracellular ammonia without loss of reproductive competence in vitro compared to both the WT and Δure parental strains. BALB/c mice challenged intranasally with the Δugh/Δure mutant showed 90% survival after 30 days, decreased fungal burden, and well-organized pulmonary granulomas. We conclude that loss of both Ugh and Ure activity significantly reduced the virulence of this fungal pathogen.


Assuntos
Amidina-Liases/metabolismo , Amônia/metabolismo , Coccidioides/metabolismo , Coccidioides/patogenicidade , Coccidioidomicose/patologia , Pneumopatias Fúngicas/patologia , Urease/metabolismo , Amidina-Liases/genética , Animais , Coccidioides/enzimologia , Coccidioides/genética , Coccidioidomicose/microbiologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Pneumopatias Fúngicas/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Urease/genética , Virulência
5.
PLoS One ; 7(7): e41034, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911737

RESUMO

Coccidioides immitis and C. posadasii, the causative agents of coccidioidomycosis, are dimorphic fungal pathogens, which grow as hyphae in the saprobic phase in the environment and as spherules in the parasitic phase in the mammalian host. In this study, we use comparative transcriptomics to identify gene expression differences between the saprobic and parasitic growth phases. We prepared Illumina mRNA sequencing libraries for saprobic-phase hyphae and parasitic-phase spherules in vitro for C. immitis isolate RS and C. posadasii isolate C735 in biological triplicate. Of 9,910 total predicted genes in Coccidioides, we observed 1,298 genes up-regulated in the saprobic phase of both C. immitis and C. posadasii and 1,880 genes up-regulated in the parasitic phase of both species. Comparing the saprobic and parasitic growth phases, we observed considerable differential expression of cell surface-associated genes, particularly chitin-related genes. We also observed differential expression of several virulence factors previously identified in Coccidioides and other dimorphic fungal pathogens. These included alpha (1,3) glucan synthase, SOWgp, and several genes in the urease pathway. Furthermore, we observed differential expression in many genes predicted to be under positive selection in two recent Coccidioides comparative genomics studies. These results highlight a number of genes that may be crucial to dimorphic phase-switching and virulence in Coccidioides. These observations will impact priorities for future genetics-based studies in Coccidioides and provide context for studies in other fungal pathogens.


Assuntos
Coccidioides/genética , Regulação Fúngica da Expressão Gênica , Transcriptoma , Coccidioides/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Fatores de Virulência/genética
6.
Methods Mol Biol ; 845: 131-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328372

RESUMO

The following transformation protocol is based on homologous recombination that occurs between a gene disruption or gene replacement construct and a target gene of Coccidioides. The DNA constructs employed contain either the gene that encodes for hygromycin B or phleomycin resistance, which are present in the pAN7.1 or pAN8.1 plasmid vectors, respectively. Hygromycin B or phleomycin are used to select for transformants at concentrations that inhibit growth of the parental strain. Coccidioides protoplasts generated from germinated arthroconidia are used for the transformation experiments. The plasmid DNA constructs are taken up by the protoplasts in the presence of calcium and polyethylene glycol. Twenty to 100 transformants/µg DNA can be obtained in each transformation experiment. Approximately 5-10% of the transformation events are homologous recombinations. Coccidioides cells in all developmental stages, including arthroconidia, are multinucleate. Since all Coccidioides nuclei are haploid, only one run of transformation is sufficient to create a mutant strain. However, the transformed protoplasts develop into heterokaryotic cells that typically contain both the parental and mutated nuclei. To isolate a homokaryotic strain, we perform multiple subcultures of the single colonies which contain heterokaryotic cells on selection plates with hygromycin B or phleomycin to enrich for the mutated nuclei. Homokaryotic mutants can be obtained after three to four subcultures of isolated colonies. In this protocol, we describe the methodology for preparation of Coccidioides protoplasts, transformation and isolation of homokaryotic mutants.


Assuntos
Cinamatos/farmacologia , Coccidioides/efeitos dos fármacos , Coccidioides/genética , Farmacorresistência Fúngica/genética , Deleção de Genes , Marcadores Genéticos/genética , Higromicina B/análogos & derivados , Fleomicinas/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Higromicina B/farmacologia , Mutagênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...