Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 255(8): 3673-84, 1980 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-7364765

RESUMO

We have reported previously that five different electrophoretic forms of mononucleosomes (MI to MV) are produced upon treatment of mammalian chromatin with micrococcal nuclease. We show here that each of these mononucleosome classes possesses internal heterogeneity due to the presence of a variety of minor protein species. Defined subsets of mononucleosome classes MII to MV have been reconstituted by reassociating stripped nucleosomes with histone H1 and non-histone protein HMG-17. This procedure leads to the generation of the same five major electrophoretic forms of mononucleosomes found in native chromatin. From the results of one- and two-dimensional electrophoretic analyses on reconstituted samples, it is concluded that different mononucleosome classes possess the following subunit structures: MI, core histone octamer (8-mer); MII, 8-mer plus one copy of HMG-17; MIIIA, 8-mer plus one copy of histone H1; MIIIB, 8-mer plus two copies of HMG-17; MIV, 8-mer plus one copy each of histone H1 and HMG-17; and MV, 8-mer plus one copy of histone H1 and two copies of HMG-17. Equal numbers of HMG-14 molecules can substitute for HMG-17 and generate the same nucleosome components. Thus, mononucleosomes possess independent binding sites for at least 1 histone H1 molecule and 2 nonhistone chromosomal protein molecules. We show further that reassociated HMG-17 molecules can exhibit a rapid interchange between binding sites, even under conditions of low ionic strength.


Assuntos
Nucleossomos/análise , Timo/análise , Animais , Bovinos , Núcleo Celular/análise , Cromatina/análise , DNA/análise , Eletroforese em Gel de Poliacrilamida , Histonas/isolamento & purificação , Nuclease do Micrococo , Peso Molecular , Nucleoproteínas/análise
2.
Proc Natl Acad Sci U S A ; 77(1): 127-31, 1980 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-6928607

RESUMO

The topography of the interaction between histone H1 and the histone octamer has been investigated. Bovine thymus nuclei or enzymatically fragmented chromatin were treated 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, which catalyzes the formation of covalent bonds between residues of proteins in electrostatic contact. Histone H1-core histone dimers were identified and the segments of molecules participating in crosslinking were elucidated. The results demonstrate that the major histone H1-core histone dimer generated upon carbodiimide crosslinking of intact nuclei, chromatin, or mononucleosomes consists of the segment of histone H1 containing amino acids 74-106 crosslinked to the segment of histone H2A containing amino acids 58-129. Thus, the central globular region of histone H1 intimately contacts the histone octamer. Besides histone H1-H2 dimers, two other histone H1-containing crosslinked products were detected. In these instances, the segments of histone H1 molecules containing amino acids 1-72 were shown to participate in crosslinking. The histone H1 contact points defined here all occur within mononucleosomes and not between nucleosomes. These results permit the formulation of a testable model for the arrangement of histone H1 along polynucleosome chains.


Assuntos
Histonas/metabolismo , Nucleossomos/ultraestrutura , Sequência de Aminoácidos , Animais , Bovinos , Reagentes de Ligações Cruzadas , Substâncias Macromoleculares , Ligação Proteica , Conformação Proteica , Timo/ultraestrutura
3.
J Biol Chem ; 254(22): 11751-60, 1979 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-500671

RESUMO

The role of histone H1 in nucleosome heterogeneity and structure has been studied using a reconstitution procedure. Histone H1 and non-histone proteins are removed selectively from enzymatically fragmented chromatin by Dowex 50W-X2 treatment. The resulting "stripped" chromatin then is reassociated with purified histone H1 using step gradient dialysis. Material reconstituted in this manner was examined by gel electrophoresis, protein cross-linking, and chromatin fingerprinting. The results demonstrate that the histone H1 molecule efficiently binds to nucleosomes with fidelity in an apparent noncooperative manner. Polynucleosomes possess two specific binding sites for histone H1 per histone octamer; the first binding site is of higher affinity than the second. The 160-base pair nuclease digestion barrier and nucleosome electrophoretic class (MIII)n are established upon binding the 1st histone H1 molecule. Upon binding the 2nd histone H1 molecule, polynucleosomes assume a highly compact conformation. The experimental approach introduced here should permit determining whether nucleosomes possess independent specific binding sites for other chromosomal proteins, and should allow reconstitution of the other electrophoretic forms of nucleosomes which we have described previously.


Assuntos
Histonas/análise , Nucleossomos/ultraestrutura , Animais , Carbodi-Imidas , Bovinos , Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Reagentes de Ligações Cruzadas , Ligação Proteica , Timo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...