Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Chem Front ; 6(8): 1236-1243, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31772734

RESUMO

Controlling the self-assembly of molecules in water is difficult because the small size, polarity, and hydrogen bond donating and accepting properties of water attenuate most non-covalent interactions. Here we describe how resorcinarene 1, with pyridinium pendent groups, assembles in water to form head-to-tail assemblies. These small supramolecular polymers form because they offer greater stabilization than any latent head-to-head assembly of resorcinarenes to form dimeric (or hexameric) containers. Instead, the resorcinarene bowl - particularly if negatively charged - is a good host for the pyridinium pendent groups of a second resorcinarene. Alternatively, resorcinarene 1 is also a good host for complexing anions and cations of any added salt. In combination therefore, host 1 possesses a rich repertoire of supramolecular properties that is dependent on the ionic strength and the nature of salts, pH, and the concentration of the host. These findings provide new information about controlling the self-assembly of resorcinarenes in water.

2.
Supramol Chem ; 31(9): 608-615, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34675465

RESUMO

Dynamic light scattering (DLS) is a useful tool for the study of the solution-based behavior of colloids and molecular assemblies. The aim of this methods paper is to provide perspective on how this technique can be used by supramolecular chemists. As this technique is not extensively used within the field, we also provide a historical background of its development, summarize data interpretation and the strengths and limitations of the technique, and provide a perspective on some of the important features for supramolecular chemists that can be found in an instrument.

3.
Beilstein J Org Chem ; 14: 2212-2219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202474

RESUMO

Although alkali halide salts play key roles in all living systems, the physical models used to describe the properties of aqueous solutions of salts do not take into account specific ion-ion interactions. To identify specific ion-ion interactions possibly contributing to the aggregation of proteins, we have used dynamic light scattering (DLS) to probe the aggregation of charged cavitands. DLS measurements of negatively charged 1 in the presence of a range of alkali metal halides reveal no significant aggregation of host 1 as a function of the nature of the cation of the added salt. Only at high concentrations could trace amounts of aggregation be detected by 1H NMR spectroscopy. Contrarily, 1 was readily aggregated and precipitated by ZnCl2. In contrast, although fluoride and chloride did not induce aggregation of positively charged host 2, this cavitand exhibited marked aggregation as a function of bromide and iodide concentration. Specifically, bromide induced small but significant amounts of dimerization, whilst iodide induced extreme aggregation. Moreover, in these cases aggregation of host 2 also exhibited a cationic dependence, with an observed trend Na+ > Li+ > K+ ≈ Cs+. In combination, these results reveal new details of specific ion pairings in aqueous solution and how this can influence the properties of dissolved organics.

4.
J Am Chem Soc ; 140(11): 4092-4099, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29533064

RESUMO

A combination of 1H NMR spectroscopy, DLS, and turbidity measurements reveal that polarizable anions engender both the Hofmeister and reverse Hofmeister effects in positand 2. Host 2 possesses two principal and distinctly different binding sites: a "soft" nonpolar pocket and a "hard" crown of ammonium cations. NMR spectroscopy reveals that anion affinity to both sites is comparable, with each site showing characteristic selectivities. NMR spectroscopy also reveals that anions competitively bind to the pocket and induce the Hofmeister effect in host-guest binding at very low concentrations (∼2 mM). Furthermore, the suite of techniques utilized demonstrates that anion binding to both sites leads to charge attenuation, aggregation, and finally precipitation (the reverse Hofmeister effect). Anion-induced precipitation generally correlated with affinity, and comparisons between the free host and its adamantane carboxylate (Ada-CO2-) complex reveals that the reverse Hofmeister effect is attenuated by blocking anion binding/charge attenuation at the nonpolar pocket.


Assuntos
Hidrocarbonetos/química , Compostos de Amônio Quaternário/síntese química , Íons/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Compostos de Amônio Quaternário/química
5.
Angew Chem Int Ed Engl ; 56(48): 15314-15318, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28972281

RESUMO

The ability to accurately determine and quantitatively evaluate kinetic phenomena associated with supramolecular assemblies, in real time, is key to a better understanding of their defined architectures and diverse functionalities. Therefore, analytical tools that can precisely assess a wide range of exchange rates within such systems are of considerable importance. This study demonstrates the ability to use an NMR approach based on saturation transfer for the determination of rates of guest exchange from molecular capsules. By using cavitands that assemble into distinct dimeric assemblies, we show that this approach, which we term guest exchange saturation transfer (GEST), allows the use of a conventional NMR setup to study and quantitatively assess a wide range of exchange rates, from 35 to more than 5000 s-1 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...