Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Traffic Inj Prev ; 17(3): 217-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26148214

RESUMO

OBJECTIVES: The objective of this article is to assess the status of road safety in Asia and present accident and injury prevention strategies based on global road safety improvement experiences and discuss the way forward by indicating opportunities and countermeasures that could be implemented to achieve a new level of safety in Asia. METHODS: This study provides a review and analyses of data in the literature, including from the World Health Organization (WHO) and World Bank, and a review of lessons learned from best practices in high-income countries. In addition, an estimation of costs due to road transport injuries in Asia and review of future trends in road transport is provided. RESULTS: Data on the global and Asian road safety problem and status of prevention strategies in Asia as well as recommendations for future actions are discussed. The total number of deaths due to road accidents in the 24 Asian countries, encompassing 56% of the total world population, is 750,000 per year (statistics 2010). The total number of injuries is more than 50 million, of which 12% are hospital admissions. The loss to the economy in the 24 Asian countries is estimated to around US$800 billion or 3.6% of the gross domestic product (GDP). CONCLUSIONS: This article clearly shows that road safety is causing large problems and high costs in Asia, with an enormous impact on the well-being of people, economy, and productivity. In many Asian low- and middle-income countries, the yearly number of fatalities and injuries is increasing. Vulnerable road users (pedestrians, cyclists, and motorcyclists combined) are particularly at risk. Road safety in Asia should be given rightful attention, including taking powerful, effective actions. This review stresses the need for reliable accident data, because there is considerable underreporting in the official statistics. Reliable accident data are imperative to determine evidence-based intervention strategies and monitor the success of these interventions and analyses. On the other hand, lack of good high-quality accident data should not be an excuse to postpone interventions. There are many opportunities for evidence-based transport safety improvements, including measures concerning the 5 key risk factors: speed, drunk driving, not wearing motorcycle helmets, not wearing seat belts, and not using child restraints in cars, as specified in the Decade of Action for Road Safety 2011-2020. In this commentary, a number of additional measures are proposed that are not covered in the Decade of Action Plan. These new measures include separate roads or lanes for pedestrians and cyclists; helmet wearing for e-bike riders; special attention to elderly persons in public transportation; introduction of emerging collision avoidance technologies, in particular automatic emergency braking (AEB) and alcohol locks; improved truck safety focusing on the other road user (including blind spot detection technology; underride protection at the front, rear, and side; and energy-absorbing fronts); and improvements in motorcycle safety concerning protective clothing, requirements for advanced braking systems, improved visibility of motorcycles by using daytime running lights, and better guardrails.


Assuntos
Acidentes de Trânsito/prevenção & controle , Segurança/estatística & dados numéricos , Ferimentos e Lesões/prevenção & controle , Acidentes de Trânsito/estatística & dados numéricos , Ásia/epidemiologia , Humanos , Fatores de Risco , Ferimentos e Lesões/epidemiologia
2.
Traffic Inj Prev ; 13(3): 265-77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22607249

RESUMO

OBJECTIVE: The aim of this study is to model occupant kinematics in an autonomous braking event by using a finite element (FE) human body model (HBM) with active muscles as a step toward HBMs that can be used for injury prediction in integrated precrash and crash simulations. METHODS: Trunk and neck musculature was added to an existing FE HBM. Active muscle responses were achieved using a simplified implementation of 3 feedback controllers for head angle, neck angle, and angle of the lumbar spine. The HBM was compared with volunteer responses in sled tests with 10 ms(-2) deceleration over 0.2 s and in 1.4-s autonomous braking interventions with a peak deceleration of 6.7 ms(-2). RESULTS: The HBM captures the characteristics of the kinematics of volunteers in sled tests. Peak forward displacements have the same timing as for the volunteers, and lumbar muscle activation timing matches data from one of the volunteers. The responses of volunteers in autonomous braking interventions are mainly small head rotations and translational motions. This is captured by the HBM controller objective, which is to maintain the initial angular positions. The HBM response with active muscles is within ±1 standard deviation of the average volunteer response with respect to head displacements and angular rotation. CONCLUSIONS: With the implementation of feedback control of active musculature in an FE HBM it is possible to model the occupant response to autonomous braking interventions. The lumbar controller is important for the simulations of lap belt-restrained occupants; it is less important for the kinematics of occupants with a modern 3-point seat belt. Increasing head and neck controller gains provides a better correlation for head rotation, whereas it reduces the vertical head displacement and introduces oscillations.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Desaceleração , Análise de Elementos Finitos , Modelos Biológicos , Músculo Esquelético/fisiologia , Índices de Gravidade do Trauma , Adulto , Automação , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Músculos do Pescoço/fisiologia
3.
Traffic Inj Prev ; 10(1): 51-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19214878

RESUMO

OBJECTIVES: Although side-impact sled studies have investigated chest, abdomen, and pelvic injury mechanics, determination of head accelerations and the associated neck forces and moments is very limited. The purpose of the present study was therefore to determine the temporal forces and moments at the upper neck region and head angular accelerations and angular velocities using postmortem human subjects (PMHS). METHODS: Anthropometric data and X-rays were obtained, and the specimens were positioned upright on a custom-designed seat, rigidly fixed to the platform of the sled. PMHS were seated facing forward with the Frankfort plane horizontal, and legs were stretched parallel to the mid-sagittal plane. The normal curvature and alignment of the dorsal spine were maintained without initial torso rotation. A pyramid-shaped nine-accelerometer package was secured to the parietal-temporal region of the head. The test matrix consisted of groups A and B, representing the fully restrained torso condition, and groups C and D, representing the three-point belt-restrained torso condition. The change in velocity was 12.4 m/s for groups A and C, 17.9 m/s for group B, and 8.7 m/s for group D tests. Two specimens were tested in each group. Injuries were scored based on the Abbreviated Injury Scale. The head mass, center of gravity, and moment of inertia were determined for each specimen. Head accelerations and upper neck forces and moments were determined before head contact. RESULTS: Neck forces and moments and head angular accelerations and angular velocities are presented on a specimen-by-specimen basis. In addition, a summary of peak magnitudes of biomechanical data is provided because of their potential in serving as injury reference values characterizing head-neck biomechanics in side impacts. Though no skull fractures occurred, AIS 0 to 3 neck traumas were dependent on the impact velocity and restraint condition. CONCLUSIONS: Because specimen-specific head center of gravity and mass moment of inertia were determined, and a suitable instrumentation system was used for data collection and analysis, head angular accelerations and neck forces and moments determined in the present study can be used with confidence to advance impact biomechanics research. Although the sample size is limited in each group, results from these tests serve as a fundamental data set to validate finite element models and evaluate the performance and biofidelity of federalized and prototype side-impact dummies with a focus on head-neck biomechanics.


Assuntos
Aceleração/efeitos adversos , Acidentes de Trânsito/classificação , Acidentes de Trânsito/estatística & dados numéricos , Cabeça , Pescoço , Cadáver , Humanos , Pessoa de Meia-Idade
4.
Stapp Car Crash J ; 49: 457-79, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096285

RESUMO

Both hardware crash dummies and mathematical human models have been developed largely using the same biomechanical data. For both, biofidelity is a main requirement. Since numerical modeling is not bound to hardware crash dummy design constraints, it allows more detailed modeling of the human and offering biofidelity for multiple directions. In this study the multi-directional biofidelity of the MADYMO human occupant model is assessed, to potentially protect occupants under various impact conditions. To evaluate the model's biofidelity, generally accepted requirements were used for frontal and lateral impact: tests proposed by EEVC and NHTSA and tests specified by ISO TR9790, respectively. A subset of the specified experiments was simulated with the human model. For lateral impact, the results were objectively rated according to the ISO protocol. Since no rating protocol was available for frontal impact, the ISO rating scheme for lateral was used for frontal, as far as possible. As a result, two scores show the overall model biofidelity for frontal and lateral impact, while individual ratings provide insight in the quality on body segment level. The results were compared with the results published for the THOR and WorldSID dummies, showing that the mathematical model exhibits a high level of multi-directional biofidelity. In addition, the performance of the human model in the NBDL 11G oblique test indicates a valid behavior of the model in intermediate directions as well. A new aspect of this study is the objective assessment of the multi-directional biofidelity of the mathematical human model according to accepted requirements. Although hardware dummies may always be used in regulations, it is expected that virtual testing with human models will serve in extrapolating outside the hardware test environment. This study was a first step towards simulating a wider range of impact conditions, such as angled impact and rollover.

5.
Stapp Car Crash J ; 47: 401-36, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17096258

RESUMO

Pedestrian accidents are one of the main causes of traffic fatalities and injuries worldwide. New pedestrian safety regulations are being proposed in Europe and Japan to improve the protection afforded to pedestrians. Numerical simulations with biofidelic pedestrian models can be used to efficiently assess the risk to injury in pedestrian-vehicle impacts and to optimize the pedestrian protection in the early stages of the vehicle design process at relatively low costs. The goal of this study was to develop and validate a scaleable mid-size male pedestrian model. The model parameters were derived from published data and a large range of impactor tests. The biofidelity of the model has been verified using a range of full pedestrian-vehicle impact tests with a large range in body sizes (16 male, 2 female, height 160-192 cm, weight 53.5-90 kg). The simulation results were objectively correlated to the experimental data. Overall, the model predicted the measured response well. In particular the head kinematics were accurately predicted, indicated by global correlation scores over 90 %. The correlation score for the bumper forces and accelerations of various body parts was lower (47-64 %), which was largely attributed to the limited information available on the vehicle contact characteristics (stiffness, damping, deformation). Also, the effects of the large range in published leg fracture tolerances on the predicted risk to leg fracture by the pedestrian model were analyzed in detail. The validated mid-size male model was scaled to a range of body sizes, including children and females.

6.
Stapp Car Crash J ; 46: 103-21, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096221

RESUMO

In current Finite Element (FE) head models, brain tissue is commonly assumed to display linear viscoelastic material behaviour. However, brain tissue behaves like a non-linear viscoelastic solid for shear strains above 1%. The main objective of this study was to study the effect of non-linear material behaviour on the predicted brain response. We used a non-linear viscoelastic constitutive model, developed on the basis of experimental shear data presented elsewere. First we tested the numerical implementation of the constitutive model by simulating the response of a silicone gel (Sylgard 572 A&B) filled cylindrical cup, subjected to a transient rotational acceleration. The experimental results could be reproduced within 9%. Subsequently, the effect of non-linear material modelling on computed brain response was investigated in an existing three-dimensional head model subjected to an eccentric rotation. At the applied external load strains in the brain were approximately ten times larger than was expected on the basis of published data. This is probably caused by the values of the shear moduli applied in the model. These are at least a factor of ten lower than the ones used in head models in literature but comparable to material data in recent literature. Non-linear material behaviour was found to influence the levels of predicted strains (+20%) and stresses (-11%) but not their temporal and spatial distribution. The pressure response was independent of non-linear material behaviour. In fact it could be predicted by the equilibrium of momentum, and thus it is independent of the choice of the brain constitutive model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...