Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 4109, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24916201

RESUMO

The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting.

2.
Nanotechnology ; 23(30): 305402, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22751088

RESUMO

The optical properties of organic semiconductor thin films deposited on nanostructured surfaces are investigated using time-resolved two-photon photoluminescence (PL) microscopy. The surfaces consist of parallel aligned metallic or dielectric nanowires forming well-defined arrays on glass substrates. Keeping the nanowire dimensions constant and varying only their spacing from 40 to 400 nm, we study the range of different types of nanowire-semiconductor interactions. For silver nanowires and spacings below 100 nm, the PL intensity and lifetime of P3HT and MDMO-PPV decrease rapidly due to the short-ranged metal-induced quenching that dominates the PL response with respect to a possible plasmonic enhancement of optical transition rates. In the case of P3HT however, we observe an additional longer-ranged reduction of non-radiative losses for both metallic and dielectric nanowires that is not observed for MDMO-PPV. Excitation polarization dependent measurements indicate that this reduction is due to self-assembly of the P3HT polymer chains along the nanowires. In conclusion, nanostructured surfaces, when fabricated across large areas, could be used to control film morphologies and to improve energy transport and collection efficiencies in P3HT-based solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...