Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 191(4): 861-871, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667601

RESUMO

Climatic conditions, trophic links between species and dispersal may induce spatial synchrony in population fluctuations. Spatial synchrony increases the extinction risk of populations and, thus, it is important to understand how synchrony-inducing mechanisms affect populations already threatened by habitat loss and climate change. For many species, it is unclear how population fluctuations vary over time and space, and what factors potentially drive this variation. In this study, we focus on factors determining population fluctuations and spatial synchrony in the Siberian flying squirrel, Pteromys volans, using long-term monitoring data from 16 Finnish populations located 2-400 km apart. We found an indication of synchronous population dynamics on a large scale in flying squirrels. However, the synchrony was not found to be clearly related to distance between study sites because the populations seemed to be strongly affected by small-scale local factors. The regularity of population fluctuations varied over time. The fluctuations were linked to changes in winter precipitation, which has previously been linked to the reproductive success of flying squirrels. Food abundance (tree mast) and predator abundance were not related to population fluctuations in this study. We conclude that spatial synchrony was not unequivocally related to distance in flying squirrels, as has been observed in earlier studies for more abundant rodent species. Our study also emphasises the role of climate in population fluctuations and the synchrony of the species.


Assuntos
Ecossistema , Árvores , Animais , Finlândia , Dinâmica Populacional , Sciuridae
2.
Naturwissenschaften ; 106(5-6): 29, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31144037

RESUMO

Intact ecosystems are being lost or modified worldwide, and many animal species are now forced to live in altered landscapes. A large amount of scientific studies have focused on understanding direct effects of habitat alterations on species occurrence, abundance, breeding success, and other life history aspects. Much less attention has been placed on understanding how habitat alterations impact on the physiology of species, e.g., via elevated chronic stress when living in an altered landscape. Here, we quantify the effects of individual age and sex, as well as effects of landscape and social factors on chronic stress of an endangered forest specialist species, the Siberian flying squirrel Pteromys volans. We collected hair samples over 2 years from across 192 flying squirrels and quantified their chronic stress response via cortisol concentrations. We then ran statistical models to relate cortisol concentrations with landscape and social factors. We show that cortisol concentrations in flying squirrels are neither affected by habitat amount and connectivity, nor by the density of conspecifics in the area. We however found that cortisol concentration was higher in adults than in pups, and in males compared with females. Lack of an effect of environmental factors on cortisol concentrations may indicate low physiological sensitivity to alterations in the surrounding environment, possibly due to low densities of predators that could induce stress in the study area. Further research should focus on possible effects of varying predator densities, alone and in interaction with landscape features, in shaping chronic stress of this and other species.


Assuntos
Pelo Animal/química , Hidrocortisona/análise , Sciuridae , Estresse Fisiológico , Fatores Etários , Animais , Ecossistema , Feminino , Masculino , Fatores Sexuais
3.
J Anim Ecol ; 86(5): 1235-1245, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28636171

RESUMO

The relative contributions of habitat and food availability on fitness may provide evidence for key habitat features needed to safeguard population persistence. However, defining habitat quality for a species can be a complex task, especially if knowledge on the relationship between individual performance and habitat quality is lacking. Here, we determined the relative importance of the availability of suitable forest habitat, body mass and food from masting tree species on female lifetime reproductive success (LRS) of Siberian flying squirrels (Pteromys volans). We calculated LRS of 500 female flying squirrels based on a 22-year-long longitudinal dataset of two populations from western Finland. We assessed with generalised additive models the potential effects of availability of suitable habitat and cumulative lifetime availability of food from masting tree species on female LRS, longevity and fecundity. On a reduced dataset, we evaluated the importance of female winter body mass and conducted a piecewise path analysis to determine how variables were connected. According to generalised additive models female longevity, fecundity and LRS were mainly determined by variation in cumulative lifetime availability of food from masting alder and birch. Instead, habitat and body mass had a smaller role. The path analysis indicated that lifetime food availability had a direct effect on longevity and fecundity, and these had an equal effect on LRS at both study sites. Our results on LRS show that the occurrence of tree masting events during a female flying squirrel's lifetime has a profoundly larger effect on LRS than the cover of suitable forest habitat. Furthermore, this study emphasises the importance of both fecundity and longevity, and the indirect effects of food availability via those components, as determinants of lifetime fitness in female flying squirrels.


Assuntos
Florestas , Reprodução , Sciuridae , Animais , Tamanho Corporal , Ecossistema , Feminino , Fertilidade , Finlândia , Longevidade , Árvores
4.
Ecol Evol ; 7(7): 2204-2213, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28405284

RESUMO

The lifetime movements of an individual determine the gene flow and invasion potential of the species. However, sex dependence of dispersal and selective pressures driving dispersal have gained much more attention than dispersal at different life and age stages. Natal dispersal is more common than dispersal between breeding attempts, but breeding dispersal may be promoted by resource availability and competition. Here, we utilize mark-recapture data on the nest-box population of Siberian flying squirrels to analyze lifetime dispersal patterns. Natal dispersal means the distance between the natal nest and the nest used the following year, whereas breeding movements refer to the nest site changes between breeding attempts. The movement distances observed here were comparable to distances reported earlier from radio-telemetry studies. Breeding movements did not contribute to lifetime dispersal distance and were not related to variation in food abundance or habitat patch size. Breeding movements of males were negatively, albeit not strongly, related to male population size. In females, breeding movement activity was low and was not related to previous breeding success or to competition between females for territories. Natal philopatry was linked to apparent death of a mother; that is, we did not find evidence for mothers bequeathing territories for offspring, like observed in some other rodent species. Our results give an example of a species in which breeding movements are not driven by environmental variability or nest site quality. Different evolutionary forces often operate in natal and breeding movements, and our study supports the view that juveniles are responsible for redistributing individuals within and between populations. This emphasizes the importance of knowledge on natal dispersal, if we want to understand consequences of movement ecology of the species at the population level.

5.
Ecol Evol ; 7(6): 1858-1868, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28331593

RESUMO

Linking dispersal to population growth remains a challenging task and is a major knowledge gap, for example, for conservation management. We studied relative roles of different demographic rates behind population growth in Siberian flying squirrels in two nest-box breeding populations in western Finland. Adults and offspring were captured and individually identifiable. We constructed an integrated population model, which estimated all relevant annual demographic rates (birth, local [apparent] survival, and immigration) as well as population growth rates. One population (studied 2002-2014) fluctuated around a steady-state equilibrium, whereas the other (studied 1995-2014) showed a numerical decline. Immigration was the demographic rate which showed clear correlations to annual population growth rates in both populations. Population growth rate was density dependent in both populations. None of the demographic rates nor the population growth rate correlated across the two study populations, despite their proximity suggesting that factors regulating the dynamics are determined locally. We conclude that flying squirrels may persist in a network of uncoupled subpopulations, where movement between subpopulations is of critical importance. Our study supports the view that dispersal has the key role in population survival of a small forest rodent.

6.
BMC Ecol ; 16(1): 51, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842537

RESUMO

BACKGROUND: One way to cope with irregularly occurring resources is to adjust reproduction according to the anticipated future resource availability. In support of this hypothesis, few rodent species have been observed to produce, after the first litter born in spring, summer litters in anticipation of autumn's seed mast. This kind of behaviour could eliminate or decrease the lag in population density normally present in consumer dynamics. We focus on possible anticipation of future food availability in Siberian flying squirrels, Pteromys volans. We utilise long-term data set on flying squirrel reproduction spanning over 20 years with individuals living in nest-boxes in two study areas located in western Finland. In winter and early spring, flying squirrels depend on catkin mast of deciduous trees. Thus, the temporal availability of food resource for Siberian flying squirrels is similar to other mast-dependent rodent species in which anticipatory reproduction has been observed. RESULTS: We show that production of summer litters was not related to food levels in the following autumn and winter. Instead, food levels before reproduction, in the preceding winter and spring, were related to production of summer litters. In addition, the amount of precipitation in the preceding winter was found to be related to the production of summer litters. CONCLUSIONS: Our results support the conclusion that Siberian flying squirrels do not anticipate the mast. Instead, increased reproductive effort in female flying squirrels is an opportunistic event, seized if the resource situation allows.


Assuntos
Sciuridae/fisiologia , Animais , Comportamento Animal , Ecossistema , Comportamento Alimentar , Feminino , Masculino , Densidade Demográfica , Estações do Ano
7.
Sci Rep ; 5: 17061, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597351

RESUMO

During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.


Assuntos
Migração Animal , Charadriiformes/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Tecnologia de Sensoriamento Remoto , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...