Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587222

RESUMO

Density functional approximations to the exchange-correlation energy can often identify strongly correlated systems and estimate their energetics through energy-minimizing symmetry-breaking. In particular, the binding energy curve of the strongly correlated chromium dimer is described qualitatively by the local spin density approximation (LSDA) and almost quantitatively by the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), where the symmetry breaking is antiferromagnetic for both. Here, we show that a full Perdew-Zunger self-interaction-correction (SIC) to LSDA seems to go too far by creating an unphysical symmetry-broken state, with effectively zero magnetic moment but non-zero spin density on each atom, which lies ∼4 eV below the antiferromagnetic solution. A similar symmetry-breaking, observed in the atom, better corresponds to the 3d↑↑4s↑3d↓↓4s↓ configuration than to the standard 3d↑↑↑↑↑4s↑. For this new solution, the total energy of the dimer at its observed bond length is higher than that of the separated atoms. These results can be regarded as qualitative evidence that the SIC needs to be scaled down in many-electron regions.

2.
J Chem Phys ; 159(15)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37861122

RESUMO

An Achille's heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3-, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth's atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi-Löwdin-Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree-Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.

3.
J Chem Phys ; 158(8): 084101, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859080

RESUMO

A new algorithm based on a rigorous theorem and quantum data computationally mined from element 118 guarantees automated construction of initial Fermi-Löwdin-Orbital (FLO) starting points for all elements in the Periodic Table. It defines a means for constructing a small library of scalable FLOs for universal use in molecular and solid-state calculations. The method can be systematically improved for greater efficiency and for applications to excited states such as x-ray excitations and optically silent excitations. FLOs were introduced to recast the Perdew-Zunger self-interaction correction (PZSIC) into an explicit unitarily invariant form. The FLOs are generated from a set of N quasi-classical electron positions, referred to as Fermi-Orbital descriptors (FODs), and a set of N-orthonormal single-electron orbitals. FOD positions, when optimized, minimize the PZSIC total energy. However, creating sets of starting FODs that lead to a positive definite Fermi orbital overlap matrix has proven to be challenging for systems composed of open-shell atoms and ions. The proof herein guarantees the existence of a FLOSIC solution and further guarantees that if a solution for N electrons is found, it can be used to generate a minimum of N - 1 and a maximum of 2N - 2 initial starting points for systems composed of a smaller number of electrons. Applications to heavy and super-heavy atoms are presented. All starting solutions reported here were obtained from a solution for element 118, Oganesson.

4.
J Chem Phys ; 156(23): 231103, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732520

RESUMO

This paper introduces the use of complex Fermi orbital descriptors (FODs) in the Fermi-Löwdin self-interaction-corrected density functional theory (FLOSIC). With complex FODs, the Fermi-Löwdin orbitals (FLOs) that are used to evaluate the SIC correction to the total energy become complex. Complex FLO-SIC (cFLOSIC) calculations based on the local spin density approximation produce total energies that are generally lower than the corresponding energies found with FLOSIC restricted to real orbitals (rFLOSIC). The cFLOSIC results are qualitatively similar to earlier Perdew-Zunger SIC (PZ-SIC) calculations using complex orbitals [J. Chem. Phys. 80, 1972 (1984); Phys. Rev. A 84, 050501(R) (2011); and J. Chem. Phys. 137, 124102 (2012)]. The energy lowering stems from the exchange-correlation part of the self-interaction correction. The Hartree part of the correction is more negative in rFLOSIC. The energy difference between real and complex solutions is greater for more strongly hybridized FLOs in atoms and for FLOs corresponding to double and triple bonds in molecules. The case of N2 is examined in detail to show the differences between the real and complex FLOs. We show that the complex triple-bond orbitals are simple, and physically appealing combinations of π and σg orbitals that have not been discussed before. Consideration of complex FODs, and resulting unitary transformations, underscores the fact that FLO centroids are not necessarily good guesses for FOD positions in a FLOSIC calculation.

5.
J Chem Phys ; 156(13): 134102, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395893

RESUMO

Density functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu+, Zn+, Zn2+, and Mn+ in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew-Zunger self-interaction correction (PZ-SIC) in the Fermi-Löwdin Orbital (FLO) SIC framework. In the case of FLO-PBE, typical errors are reduced to less than 0.1 eV. Analysis of the results using DFT energies evaluated on self-interaction-corrected densities [DFT(@FLO)] indicates that the density-driven contributions to the FLO-DFT adsorption energy corrections are roughly the same size in DFT = LSDA and PBE, but the total corrections due to removing self-interaction are larger in LSDA.

6.
J Chem Phys ; 154(2): 024102, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445898

RESUMO

The Perdew-Zunger self-interaction correction (PZ-SIC) removes unphysical electron self-interaction from calculations employing standard density functional approximations. Doing so improves many computed properties, bringing them into better agreement with experimental observations or with results from high-level quantum chemistry calculations. However, while PZ-SIC generally corrects in the right direction relative to the corresponding reference values, in many cases, it over-corrects. For this reason, scaled-down versions of PZ-SIC have been proposed and investigated. These approaches have mostly employed exterior scaling in which SIC correction terms are scaled in the same way at every point in space. Recently, a new local, or interior, scaling SIC method was proposed on non-empirical grounds to restore a property of the exact, but unknown, density functional that is broken in PZ-SIC. In this approach, the scaling at each point depends on the character of the charge density at that point. However, the local scaling can be done in various ways while still restoring the behavior of the exact functional. In this work, we compare and contrast the performance of various interior scaling approaches for addressing over-corrections of calculated molecular dipole moments and atomic polarizabilities and properties that reflect the nature of the electronic charge density.

7.
J Chem Phys ; 151(17): 174106, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703485

RESUMO

Spurious electron self-interaction in density functional approximations (DFAs) can lead to inaccurate predictions of charge transfer in heteronuclear molecules that manifest as errors in calculated electrostatic dipoles. Here, we show the magnitude of these errors on dipoles computed for a diverse set of 47 molecules taken from the recent benchmark study of Hait and Head-Gordon [J. Chem. Theory Comput. 14, 1969 (2018)]. We compare the results of Perdew-Wang local spin density approximation (PW92), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and strongly constrained and appropriately normed (SCAN) meta-GGA dipole calculations, along with those of their respective self-interaction-corrected (SIC) counterparts, to reference values from accurate wave function-based methods. The SIC calculations were carried out using the Fermi-Löwdin orbital (FLO-SIC) approach. We find that correcting for self-interaction generally increases the degree of charge transfer, thereby increasing the size of calculated dipole moments. The FLO-SIC-PW92 and FLO-SIC-PBE dipoles are in better agreement with reference values than their uncorrected DFA counterparts, particularly for strongly ionic molecules where significant improvement is seen. Applying FLO-SIC to SCAN does not improve dipole values overall. We also show that removing self-interaction improves the description of the dipole for stretched-bond geometries and recovers the physically correct separated atom limit of zero dipole. Finally, we find that the best agreement between the FLO-SIC-DFA and reference dipoles occurs when the molecular geometries are optimized using the FLO-SIC-DFA.

9.
J Comput Chem ; 40(6): 820-825, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589095

RESUMO

We derived, implemented, and thoroughly tested the complete analytic expression for atomic forces, consisting of the Hellmann-Feynman term and the Pulay correction, for the Fermi-Löwdin orbital self-interaction correction (FLO-SIC) method. Analytic forces are shown to be numerically accurate through an extensive comparison to forces obtained from finite differences. Using the analytic forces, equilibrium structures for a small set of molecules were obtained. This work opens the possibility of routine self-interaction free geometrical relaxations of molecules using the FLO-SIC method. © 2018 Wiley Periodicals, Inc.

10.
J Chem Phys ; 149(16): 164101, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384709

RESUMO

We analyze the effect of removing self-interaction error on magnetic exchange couplings using the Fermi-Löwdin orbital self-interaction correction (FLOSIC) method in the framework of density functional theory (DFT). We compare magnetic exchange couplings obtained from self-interaction-free FLOSIC calculations with the local spin density approximation (LSDA) with several widely used DFT realizations and wave function based methods. To this end, we employ the linear H-He-H model system, six organic radical molecules, and [Cu2Cl6]2- as representatives of different types of magnetic interactions. We show that the simple self-interaction-free version of LSDA improves calculated couplings with respect to LSDA in all cases, even though the nature of the exchange interaction varies across the test set, and in most cases, it yields results comparable to modern hybrids and range-separated approximate functionals.

11.
J Phys Chem A ; 122(48): 9307-9315, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30412407

RESUMO

The self-interaction error (SIE) is one of the major drawbacks of practical exchange-correlation functionals for Kohn-Sham density functional theory. Despite this, the use of methods that explicitly remove SIE from approximate density functionals is scarce in the literature due to their relatively high computational cost and lack of consistent improvement over standard modern functionals. In this article we assess the performance of a novel approach recently proposed by Pederson, Ruzsinszky, and Perdew [ J. Chem. Phys. 2014, 140, 121103] for performing self-interaction free calculations in density functional theory based on Fermi orbitals. To this end, we employ test sets consisting of reaction energies that are considered particularly sensitive to SIE. We found that the parameter-free Fermi-Löwdin orbital self-interaction correction method combined with the standard local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof (PBE) functionals gives a much better estimate of reaction energies compared to their parent LSDA and PBE functionals for most of the reactions in these two sets. They also perform on par with the global PBE0 and range-separated LC-ωPBE hybrids, which partially eliminate the SIE by including Hartree-Fock exchange. This shows the potential of the Fermi-Löwdin orbital self-interaction correction (FLOSIC) method for practical density functional calculations without SIE.

12.
J Chem Theory Comput ; 14(8): 4122-4128, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29986131

RESUMO

The Fermi-Löwdin orbital self-interaction correction (FLOSIC) formalism is a novel method for implementing the Perdew-Zunger self-interaction correction (PZ-SIC) in density functional theory calculations. In this paper we consider how the use of Fermi orbitals affects total energies and other calculated properties compared to a standard approach to PZ-SIC that utilizes the localization equation conditions. We directly compare the results of the two methods using identical basis sets and numerical techniques in calculations for isolated atoms up to Kr and for a large test set of molecules. We find differences in total energies that increase with increasing atomic number and show that these differences can be traced to a less negative SIC correction for the 1s orbital in FLOSIC. Importantly, energies for highest occupied orbitals and molecular atomization energies are nearly identical in the two methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...