Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 50(11): 7027-7038, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37245075

RESUMO

BACKGROUND: T2 * mapping can characterize tumor hypoxia, which may be associated with resistance to therapy. Acquiring T2 * maps during MR-guided radiotherapy could inform treatment adaptation by, for example, escalating the dose to resistant sub-volumes. PURPOSE: The purpose of this work is to demonstrate the feasibility of the accelerated T2 * mapping technique using model-based image reconstruction with integrated trajectory auto-correction (TrACR) for MR-guided radiotherapy on an MR-Linear accelerator (MR-Linac). MATERIALS AND METHODS: The proposed method was validated in a numerical phantom, where two T2 * mapping approaches (sequential and joint) were compared for different noise levels (0,0.1,0.5,1) and gradient delays ([1, -1] and [1, -2] in units of dwell time for x- and y-axis, respectively). Fully sampled k-space was retrospectively undersampled using two different undersampling patterns. Root mean square errors (RMSEs) were calculated between reconstructed T2 * maps and ground truth. In vivo data was acquired twice weekly in one prostate and one head and neck cancer patient undergoing treatment on a 1.5 T MR-Linac. Data were retrospectively undersampled and T2 * maps reconstructed, with and without trajectory corrections were compared. RESULTS: Numerical simulations demonstrated that, for all noise levels, T2 * maps reconstructed with a joint approach demonstrated less error compared to an uncorrected and sequential approach. For a noise level of 0.1, uniform undersampling and gradient delay [1, -1] (in units of dwell time for x- and y-axis, respectively), RMSEs for sequential and joint approaches were 13.01 and 9.32 ms, respectively, which reduced to 10.92 and 5.89 ms for a gradient delay of [1, 2]. Similarly, for alternate undersampling and gradient delay [1, -1], RMSEs for sequential and joint approaches were 9.80 and 8.90 ms, respectively, which reduced to 9.10 and 5.40 ms for gradient delay [1, 2]. For in vivo data, T2 * maps reconstructed with our proposed approach resulted in less artifacts and improved visual appearance compared to the uncorrected approach. For both prostate and head and neck cancer patients, T2 * maps reconstructed from different treatment fractions showed changes within the planning target volume (PTV). CONCLUSION: Using the proposed approach, a retrospective data-driven gradient delay correction can be performed, which is particularly relevant for hybrid devices, where full information on the machine configuration is not available for image reconstruction. T2 * maps were acquired in under 5 min and can be integrated into MR-guided radiotherapy treatment workflows, which minimizes patient burden and leaves time for additional imaging for online adaptive radiotherapy on an MR-Linac.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Masculino , Humanos , Estudos Retrospectivos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Aceleradores de Partículas
2.
Insights Imaging ; 13(1): 104, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715706

RESUMO

OBJECTIVES: Radiomic models present an avenue to improve oesophageal adenocarcinoma assessment through quantitative medical image analysis. However, model selection is complicated by the abundance of available predictors and the uncertainty of their relevance and reproducibility. This analysis reviews recent research to facilitate precedent-based model selection for prospective validation studies. METHODS: This analysis reviews research on 18F-FDG PET/CT, PET/MRI and CT radiomics in oesophageal adenocarcinoma between 2016 and 2021. Model design, testing and reporting are evaluated according to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) score and Radiomics Quality Score (RQS). Key results and limitations are analysed to identify opportunities for future research in the area. RESULTS: Radiomic models of stage and therapeutic response demonstrated discriminative capacity, though clinical applications require greater sensitivity. Although radiomic models predict survival within institutions, generalisability is limited. Few radiomic features have been recommended independently by multiple studies. CONCLUSIONS: Future research must prioritise prospective validation of previously proposed models to further clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...