Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 51(6): 1506-1515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155237

RESUMO

PURPOSE: Transarterial radioembolization (TARE) procedures treat liver tumors by injecting radioactive microspheres into the hepatic artery. Currently, there is a critical need to optimize TARE towards a personalized dosimetry approach. To this aim, we present a novel microsphere dosimetry (MIDOS) stochastic model to estimate the activity delivered to the tumor(s), normal liver, and lung. METHODS: MIDOS incorporates adult male/female liver computational phantoms with the hepatic arterial, hepatic portal venous, and hepatic venous vascular trees. Tumors can be placed in both models at user discretion. The perfusion of microspheres follows cluster patterns, and a Markov chain approach was applied to microsphere navigation, with the terminal location of microspheres determined to be in either normal hepatic parenchyma, hepatic tumor, or lung. A tumor uptake model was implemented to determine if microspheres get lodged in the tumor, and a probability was included in determining the shunt of microspheres to the lung. A sensitivity analysis of the model parameters was performed, and radiation segmentectomy/lobectomy procedures were simulated over a wide range of activity perfused. Then, the impact of using different microspheres, i.e., SIR-Sphere®, TheraSphere®, and QuiremSphere®, on the tumor-to-normal ratio (TNR), lung shunt fraction (LSF), and mean absorbed dose was analyzed. RESULTS: Highly vascularized tumors translated into increased TNR. Treatment results (TNR and LSF) were significantly more variable for microspheres with high particle load. In our scenarios with 1.5 GBq perfusion, TNR was maximum for TheraSphere® at calibration time in segmentectomy/lobar technique, for SIR-Sphere® at 1-3 days post-calibration, and regarding QuiremSphere® at 3 days post-calibration. CONCLUSION: This novel approach is a decisive step towards developing a personalized dosimetry framework for TARE. MIDOS assists in making clinical decisions in TARE treatment planning by assessing various delivery parameters and simulating different tumor uptakes. MIDOS offers evaluation of treatment outcomes, such as TNR and LSF, and quantitative scenario-specific decisions.


Assuntos
Neoplasias Hepáticas , Microesferas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Processos Estocásticos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Masculino , Feminino , Modelos Biológicos , Embolização Terapêutica/métodos
2.
Phys Med Biol ; 68(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37827171

RESUMO

Purpose. Lymphopenia is a common side effect in patients treated with radiotherapy, potentially caused by direct cell killing of circulating lymphocytes in the blood. To investigate this hypothesis, a method to assess dose to circulating lymphocytes is needed.Methods. A stochastic model to simulate systemic blood flow in the human body was developed based on a previously designed compartment model. Blood dose was obtained by superimposing the spatiotemporal distribution of blood particles with a time-varying dose rate field, and used as a surrogate for dose to circulating lymphocytes. We discuss relevant theory on compartmental modeling and how to combine it with models of explicit organ vasculature.Results. A general workflow was established which can be used for any anatomical site. Stochastic compartments can be replaced by explicit models of organ vasculatures for improved spatial resolution, and tumor compartments can be dynamically assigned. Generating a patient-specific blood flow distribution takes about one minute, fast enough to investigate the effect of varying treatment parameters such as the dose rate. Furthermore, the anatomical structures contributing most to the overall blood dose can be identified, which could potentially be used for lymphocyte-sparing treatment planning.Conclusion. The ability to report the blood dose distribution during radiotherapy is imperative to test and act upon the current paradigm that radiation-induced lymphopenia is caused by direct cell killing of lymphocytes in the blood. We have built a general model that can do so for various treatment sites. The presented framework is publicly available athttp://github.com/mghro/hedos.


Assuntos
Linfopenia , Neoplasias , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias/radioterapia , Linfócitos , Hemodinâmica , Linfopenia/etiologia , Dosagem Radioterapêutica
3.
Phys Med Biol ; 68(10)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36996844

RESUMO

Objective. Phantoms of the International Commission on Radiological Protection provide a framework for standardized dosimetry. The modeling of internal blood vessels-essential to tracking circulating blood cells exposed during external beam radiotherapy and to account for radiopharmaceutical decays while still in blood circulation-is, however, limited to the major inter-organ arteries and veins. Intra-organ blood is accounted for only through the assignment of a homogeneous mixture of parenchyma and blood [single-region (SR) organs]. Our goal was to develop explicit dual-region (DR) models of intra-organ blood vasculature of the adult male brain (AMB) and adult female brain (AFB).Approach. A total of 4000 vessels were created amongst 26 vascular trees. The AMB and AFB models were then tetrahedralized for coupling to the PHITS radiation transport code. Absorbed fractions were computed for monoenergetic alpha particles, electrons, positrons, and photons for both decay sites within the blood vessels and for tissues outside these vessels. RadionuclideS-values were computed for 22 and 10 radionuclides commonly employed in radiopharmaceutical therapy and nuclear medicine diagnostic imaging, respectively.Main results. For radionuclide decays, values ofS(brain tissue ← brain blood) assessed in the traditional manner (SR) were higher than those computed using our DR models by factors of 1.92, 1.49, and 1.57 for therapeutic alpha-emitters, beta-emitters, and Auger electron-emitters, respectively in the AFB and by factors of 1.65, 1.37, and 1.42 for these same radionuclide categories in the AMB. Corresponding ratios of SR and DR values ofS(brain tissue ← brain blood) were 1.34 (AFB) and 1.26 (AMB) for four SPECT radionuclides, and were 1.32 (AFB) and 1.24 (AMB) for six common PET radionuclides.Significance. The methodology employed in this study can be explored in other organs of the body for proper accounting of blood self-dose for that fraction of the radiopharmaceutical still in general circulation.


Assuntos
Radiometria , Compostos Radiofarmacêuticos , Doses de Radiação , Radioisótopos , Imagens de Fantasmas , Encéfalo , Método de Monte Carlo
4.
Int J Radiat Oncol Biol Phys ; 116(5): 1226-1233, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739919

RESUMO

PURPOSE: Radiation-induced lymphopenia has gained attention recently as the result of its correlation with survival in a range of indications, particularly when combining radiation therapy (RT) with immunotherapy. The purpose of this study is to use a dynamic blood circulation model combined with observed lymphocyte depletion in patients to derive the in vivo radiosensitivity of circulating lymphocytes and study the effect of RT delivery parameters. METHODS AND MATERIALS: We assembled a cohort of 17 patients with hepatocellular carcinoma treated with proton RT alone in 15 fractions (fx) using conventional dose rates (beam-on time [BOT], 120 seconds) for whom weekly absolute lymphocyte counts (ALCs) during RT and follow-up were available. We used HEDOS, a time-dependent, whole-body, blood flow computational framework, in combination with explicit liver blood flow modeling, to calculate the dose volume histograms for circulating lymphocytes for changing BOTs (1 second-300 seconds) and fractionations (5 fx, 15 fx). From this, we used the linear cell survival model and an exponential model to determine patient-specific lymphocyte radiation sensitivity, α, and recovery, σ, respectively. RESULTS: The in vivo-derived patient-specific α had a median of 0.65 Gy-1 (range, 0.30-1.38). Decreasing BOT to 1 second led to an increased average end-of-treatment ALC of 27.5%, increasing to 60.3% when combined with the 5-fx regimen. Decreasing to 5 fx at the conventional dose rate led to an increase of 17.0% on average. The benefit of both increasing dose rate and reducing the number of fractions was patient specificࣧpatients with highly sensitive lymphocytes benefited most from decreasing BOT, whereas patients with slow lymphocyte recovery benefited most from the shorter fractionation regimen. CONCLUSIONS: We observed that increasing dose rate at the same fractionation reduced ALC depletion more significantly than reducing the number of fractions. High-dose-rates led to an increased sparing of lymphocytes when shortening the fractionation regimen, particularly for patients with radiosensitive lymphocytes at elevated risk.


Assuntos
Neoplasias Hepáticas , Linfopenia , Terapia com Prótons , Humanos , Prótons , Terapia com Prótons/efeitos adversos , Linfopenia/etiologia , Linfócitos/efeitos da radiação , Neoplasias Hepáticas/radioterapia
5.
EJNMMI Phys ; 9(1): 28, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416550

RESUMO

PURPOSE: To develop a model of the internal vasculature of the adult liver and demonstrate its application to the differentiation of radiopharmaceutical decay sites within liver parenchyma from those within organ blood. METHOD: Computer-generated models of hepatic arterial (HA), hepatic venous (HV), and hepatic portal venous (HPV) vascular trees were algorithmically created within individual lobes of the ICRP adult female and male livers (AFL/AML). For each iteration of the algorithm, pressure, blood flow, and vessel radii within each tree were updated as each new vessel was created and connected to a viable bifurcation site. The vascular networks created inside the AFL/AML were then tetrahedralized for coupling to the PHITS radiation transport code. Specific absorbed fractions (SAF) were computed for monoenergetic alpha particles, electrons, positrons, and photons. Dual-region liver models of the AFL/AML were proposed, and particle-specific SAF values were computed assuming radionuclide decays in blood within two locations: (1) sites within explicitly modeled hepatic vessels, and (2) sites within the hepatic blood pool residing outside these vessels to include the capillaries and blood sinuses. S values for 22 and 10 radionuclides commonly used in radiopharmaceutical therapy and imaging, respectively, were computed using the dual-region liver models and compared to those obtained in the existing single-region liver model. RESULTS: Liver models with virtual vasculatures of ~ 6000 non-intersecting straight cylinders representing the HA, HPV, and HV circulations were created for the ICRP reference. For alpha emitters and for beta and auger-electron emitters, S values using the single-region models were approximately 11% (AML) to 14% (AFL) and 11% (AML) to 13% (AFL) higher than the S values obtained using the dual-region models, respectively. CONCLUSIONS: The methodology employed in this study has shown improvements in organ parenchymal dosimetry through explicit consideration of blood self-dose for alpha particles (all energies) and for electrons at energies below ~ 100 keV.

6.
Phys Med Biol ; 67(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35061601

RESUMO

We have developed a novel 4D dynamic liver blood flow model, capable of accurate dose estimation to circulating blood cells during liver-directed external beam radiotherapy, accounting for blood recirculation and radiation delivery time structure. Adult male and adult female liver computational phantoms with detailed vascular trees were developed to include the hepatic arterial, hepatic portal venous, and hepatic venous trees. A discrete time Markov Chain approach was applied to determine the spatiotemporal distribution of 105blood particles (BP) in the human body based on reference values for cardiac output and organ blood volumes. For BPs entering the liver, an explicit Monte Carlo simulation was implemented to track their propagation along ∼2000 distinct vascular pathways through the liver. The model tracks accumulated absorbed dose from time-dependent radiation fields with a 0.1 s time resolution. The computational model was then evaluated for 3 male and 3 female patients receiving photon (VMAT and IMRT) and proton (passive SOBP and active PBS) treatments. The dosimetric impact of treatment modality, delivery time, and fractionation on circulating blood cells was investigated and quantified using the mean dose (µdose,b),V>0Gy,V>0.125Gy,andD2%. Average reductions inµdose,b,V>0Gy,V>0.125GyandD2%of 45%, 6%, 53%, 19% respectively, were observed for proton treatments as compared to photon treatments. Our simulation also showed thatV>0Gy,V>0.125Gy, andD2%were highly sensitive to the beam-on time. BothV>0GyandV>0.125Gyincreased with beam-on time, whereasD2%decreased with increasing beam-on time, demonstrating the tradeoff between low dose to a large fraction of blood cells and high dose to a small fraction of blood cells. Consequently, proton treatments are not necessarily advantageous in terms of dose to the blood simply based on integral dose considerations. Instead, both integral dose and beam-on time can substantially impact relevant dosimetric indices.


Assuntos
Terapia com Prótons , Prótons , Feminino , Humanos , Fígado , Linfócitos , Masculino , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
Phys Med Biol ; 66(16)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34293735

RESUMO

We have developed a time-dependent computational framework, hematological dose (HEDOS), to estimate dose to circulating blood cells from radiation therapy treatment fields for any treatment site. Two independent dynamic models were implemented in HEDOS: one describing the spatiotemporal distribution of blood particles (BPs) in organs and the second describing the time-dependent radiation field delivery. A whole-body blood flow network based on blood volumes and flow rates from ICRP Publication 89 was simulated to produce the spatiotemporal distribution of BPs in organs across the entire body using a discrete-time Markov process. Constant or time-varying transition probabilities were applied and their impact on transition time was investigated. The impact of treatment time and anatomical site were investigated using imaging data and dose distributions from a liver cancer and a brain cancer patient. The simulations revealed different dose levels to the circulating blood for brain irradiation compared to liver irradiation even for similar field sizes due to the different blood flow properties of the two organs. The volume of blood receiving any dose (V>0 Gy) after a single radiation fraction increases from 1.2% for a 1 s delivery time to 20.9% for 120 s delivery time for the brain cancer treatment, and from 10% (1 s) to 48.7% (120 s) for a liver cancer treatment. Other measures of the low-dose bath to the circulating blood such as the dose to small volumes of blood (D2%) decreases with longer delivery time. Furthermore, we demonstrate that the blood dose-volume histogram is highly sensitive to changes in the treatment time, indicating that dynamic modeling of blood flow and radiation fields is necessary to evaluate dose to circulating blood cells for the assessment of radiation-induced lymphopenia. HEDOS is publicly available and allows for the estimation of patient-specific dose to circulating blood cells based on organ DVHs, thus enabling the study of the impact of different treatment plans, dose rates, and fractionation schemes.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Células Sanguíneas , Humanos , Doses de Radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...