Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698512

RESUMO

Conditional reprogramming is a cell culture technique that effectively immortalizes epithelial cells with normal genotypes by renewing epidermal stem cells. Y-27632, a compound that promotes conditional reprogramming through an unknown mechanism, was developed to inhibit the two Rho-associated kinase (ROCK) isoforms. We used human foreskin keratinocytes (HFKs) to study the role of Y-27632 in conditional reprogramming and learn how ROCKs control epidermal stem cell renewal. In conditional reprogramming, Y-27632 increased HFK adherence to culture dishes, progression through S, G2 and M phases of the cell cycle, and epidermal stem cell marker levels. Although this correlated with ROCK inhibition by Y-27632, we generated CRISPR-Cas9-mediated HFK ROCK knockouts to test the direct role of ROCK inhibition. Knockout of single ROCK isoforms was insufficient to disrupt ROCK activity or promote HFK propagation without Y-27632. Although ROCK activity was reduced, HFKs with double knockout of ROCK1 and ROCK2 still required Y-27632 to propagate. Y-27632 was the most effective among the ROCK inhibitors we tested at promoting HFK proliferation and epidermal stem cell marker expression. Thus, the ability of Y-27632 to promote an epidermal stem cell state in conditional reprogramming not only depends upon ROCK inhibition but also acts via as-yet-unidentified mechanisms. Epidermal stem cell renewal might in part be regulated by ROCKs, but also involves additional pathways.


Assuntos
Células Epidérmicas , Células-Tronco , Humanos , Epiderme , Queratinócitos , Quinases Associadas a rho
2.
PLoS One ; 11(3): e0152013, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010837

RESUMO

In many bacteria, the DNA damage response induces genes (SOS genes) that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD). Upon DNA damage, LexA cleaves itself and allows induction of transcription. In Acinetobacter baumannii and Acinetobacter baylyi, multiple genes are induced by DNA damage, and although the Acinetobacter genus lacks LexA, a homolog of the error-prone polymerase subunit UmuD, called UmuDAb, regulates some DNA damage-induced genes. The mechanism of UmuDAb regulation has not been determined. We constructed UmuDAb mutant strains of A. baylyi to test whether UmuDAb mediates gene regulation through LexA-like repressor actions consisting of relief of repression through self-cleavage after DNA damage. Real-time quantitative PCR experiments in both a null umuDAb mutant and an NTD mutant showed that the DNA damage-inducible, UmuDAb-regulated gene ddrR was highly expressed even in the absence of DNA damage. Protein modeling identified a potential LexA-like helix-turn-helix structure in the UmuDAb NTD, which when disrupted, also relieved ddrR and umuDAb repression under non-inducing conditions. Mutations in a putative SOS box in the shared umuDAb-ddrR promoter region similarly relieved these genes' repression under non-inducing conditions. Conversely, cells possessing a cleavage-deficient UmuDAb were unable to induce gene expression after MMC-mediated DNA damage. This evidence of a UmuDAb repressor mechanism was contrasted with the failure of umuDAb to complement an Escherichia coli umuD mutant for UmuD error-prone DNA replication activity. Similarly, A. baumannii null umuDAb mutant cells did not have a reduced UmuD'2UmuC-mediated mutation rate after DNA damage, suggesting that although this UmuDAb protein may have evolved from a umuDC operon in this genus, it now performs a LexA-like repressor function for a sub-set of DNA damage-induced genes.


Assuntos
Acinetobacter/genética , Proteínas de Bactérias/genética , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas Repressoras/genética , Resposta SOS em Genética , Acinetobacter/enzimologia , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Serina Endopeptidases/genética
3.
PLoS One ; 9(4): e93861, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24709747

RESUMO

The SOS response to DNA damage that induces up to 10% of the prokaryotic genome requires RecA action to relieve LexA transcriptional repression. In Acinetobacter species, which lack LexA, the error-prone polymerase accessory UmuDAb is instead required for ddrR induction after DNA damage, suggesting it might be a LexA analog. RNA-Seq experiments defined the DNA damage transcriptome (mitomycin C-induced) of wild type, recA and umuDAb mutant strains of both A. baylyi ADP1 and A. baumannii ATCC 17978. Of the typical SOS response genes, few were differentially regulated in these species; many were repressed or absent. A striking 38.4% of all ADP1 genes, and 11.4% of all 17978 genes, were repressed under these conditions. In A. baylyi ADP1, 66 genes (2.0% of the genome), including a CRISPR/Cas system, were DNA damage-induced, and belonged to four regulons defined by differential use of recA and umuDAb. In A. baumannii ATCC 17978, however, induction of 99% of the 152 mitomycin C-induced genes depended on recA, and only 28 of these genes required umuDAb for their induction. 90% of the induced A. baumannii genes were clustered in three prophage regions, and bacteriophage particles were observed after mitomycin C treatment. These prophages encoded esvI, esvK1, and esvK2, ethanol-stimulated virulence genes previously identified in a Caenorhabditis elegans model, as well as error-prone polymerase alleles. The induction of all 17978 error-prone polymerase alleles, whether prophage-encoded or not, was recA dependent, but only these DNA polymerase V-related genes were de-repressed in the umuDAb mutant in the absence of DNA damage. These results suggest that both species possess a robust and complex DNA damage response involving both recA-dependent and recA-independent regulons, and further demonstrates that although umuDAb has a specialized role in repressing error-prone polymerases, additional regulators likely participate in these species' transcriptional response to DNA damage.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter/genética , Proteínas de Bactérias/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Recombinases Rec A/genética , Transcriptoma/genética , Ativação Viral/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mitomicina/farmacologia , Recombinases Rec A/metabolismo , Transcriptoma/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...