Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(9): E1180-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26888283

RESUMO

According to the standard model of bacterial translation initiation, the small ribosomal 30S subunit binds to the initiation site of an mRNA with the help of three initiation factors (IF1-IF3). Here, we describe a novel type of initiation termed "70S-scanning initiation," where the 70S ribosome does not necessarily dissociate after translation of a cistron, but rather scans to the initiation site of the downstream cistron. We detailed the mechanism of 70S-scanning initiation by designing unique monocistronic and polycistronic mRNAs harboring translation reporters, and by reconstituting systems to characterize each distinct mode of initiation. Results show that 70S scanning is triggered by fMet-tRNA and does not require energy; the Shine-Dalgarno sequence is an essential recognition element of the initiation site. IF1 and IF3 requirements for the various initiation modes were assessed by the formation of productive initiation complexes leading to synthesis of active proteins. IF3 is essential and IF1 is highly stimulating for the 70S-scanning mode. The task of IF1 appears to be the prevention of untimely interference by ternary aminoacyl (aa)-tRNA•elongation factor thermo unstable (EF-Tu)•GTP complexes. Evidence indicates that at least 50% of bacterial initiation events use the 70S-scanning mode, underscoring the relative importance of this translation initiation mechanism.


Assuntos
Biossíntese de Proteínas , Ribossomos/metabolismo , Modelos Moleculares , Fatores de Iniciação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo
2.
Nature ; 485(7399): 526-9, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22622583

RESUMO

Bacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA. Accurate loading of the MLD into the mRNA path is an unusual initiation mechanism. Despite various snapshots of different ribosome-tmRNA complexes at low to intermediate resolution, it is unclear how the large, highly structured tmRNA is translocated and how the MLD is loaded. Here we present a cryo-electron microscopy reconstruction of a fusidic-acid-stalled ribosomal 70S-tmRNA-SmpB-EF-G complex (carrying both of the large ligands, that is, EF-G and tmRNA) at 8.3 Å resolution. This post-translocational intermediate (TI(POST)) presents the TLD-SmpB module in an intrasubunit ap/P hybrid site and a tRNA(fMet) in an intrasubunit pe/E hybrid site. Conformational changes in the ribosome and tmRNA occur in the intersubunit space and on the solvent side. The key underlying event is a unique extra-large swivel movement of the 30S head, which is crucial for both tmRNA-SmpB translocation and MLD loading, thereby coupling translocation to MLD loading. This mechanism exemplifies the versatile, dynamic nature of the ribosome, and it shows that the conformational modes of the ribosome that normally drive canonical translation can also be used in a modified form to facilitate more complex tasks in specialized non-canonical pathways.


Assuntos
Escherichia coli/química , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Sequência de Bases , Microscopia Crioeletrônica , Ácido Fusídico/metabolismo , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/ultraestrutura , Ligação Proteica , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/ultraestrutura , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/genética , Ribossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...