Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(17): 9618-9626, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33476423

RESUMO

Compounds of main-group elements such as silicon are attractive candidates for green and inexpensive catalysts. For them to compete with state-of-the-art transition-metal complexes, new reactivity modes must be unlocked and controlled, which can be achieved through strain. Using a tris(2-skatyl)methylphosphonium ([TSMPH3 ]+ ) scaffold, we prepared the strained cationic silane [TSMPSiH]+ . In stark contrast with the generally hydridic Si-H bond character, it is acidic with an experimental pKa DMSO within 4.7-8.1, lower than in phenol, benzoic acid, and the few hydrosilanes with reported pKa values. We show that ring strain significantly contributes to this unusual acidity along with inductive and electrostatic effects. The conjugate base, TSMPSi, activates a THF molecule in the presence of CH-acids to generate a highly fluxional alkoxysilane via trace amounts of [TSMPSiH]+ functioning as a strain-release Lewis acid. This reaction involves a formal oxidation-state change from SiII to SiIV , presenting intriguing similarities with transition-metal-mediated processes.

2.
Organometallics ; 38(2): 231-239, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30713362

RESUMO

The tris-N-heterocycle germanide (tmim)Ge- (1) (tmimH3 = tris(3-methylindol-2-yl)methane) was synthesized by nucleophilic substitution for the tmim3- trianion on GeCl2·dioxane. In combination with the previously reported (tmim)Si- and (tmim)P analogues, it provides a convenient model for investigating the influence of the central atom on the properties of isoelectronic ligands. Complexation of the germanide (tmim)Ge- to CuCl resulted in the dimeric chloro cuprate [(tmim)GeCu(µ-Cl)]2 2-, which is prone to dissociation in MeCN to form the neutral, solvated germylcopper (tmim)GeCu(NCMe)3. The reaction of 1 with Fe2(CO)9 afforded the germyl iron tetracarbonyl [(tmim)GeFe(CO)4]-. Analysis of the ν̃(CO) infrared absorption bands in this complex indicates that the combined electron donating and accepting properties of 1 are found in between those of (tmim)P and (tmim)Si-. In contrast to (tmim)Si-, (tmim)Ge- is reluctant to coordinate to FeCl2, likely because of its softer Lewis base character. Key structural features of the ligands and complexes reflect changes in their electronic properties. In particular, the N-Ge-N angles increase upon coordination to a metal fragment, suggesting increasing hybridization of the Ge s- and p-orbitals. These findings will be useful in further understanding low-valent heavier group 14 complexes in organometallic chemistry.

3.
Organometallics ; 37(18): 3024-3034, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30270963

RESUMO

N-Heterocycle-substituted silyl iron complexes have been synthesized by nucleophilic substitution at trichlorosilyl ligands bound to iron. The homoleptic (tripyrrolyl)- and tris(3-methylindolyl)silyl groups were accessed from (Cl3Si)CpFe(CO)2 (Cl3SiFp) by substitution of chloride with pyrrolide or 3-methylindolide, respectively. Analogously, nucleophilic substitution of Cl with pyrrolide on the anionic Fe(0) synthon Cl3SiFe(CO)4 - generates the (tripyrrolyl)silyl ligand, bound to the iron tetracarbonyl fragment. The bulkier 2-mesitylpyrrolide substitutes a maximum of 2 chlorides on Cl3SiFp under the same conditions. The tridentate, trianionic nucleophile tmim (tmimH3 = tris(3-methylindol-2-yl)methane) proves reluctant to perform the substitution in a straightforward manner; instead, ring-opening and incorporation of THF occurs to form the tris-THF adduct tmim(C4H8O)3SiFe(CO)4 -. The bidentate, monoanionic nucleophile 2-(dipp-iminomethyl)pyrrolide (DippIMP, dipp = 2,6-diisopropylphenyl) shows chloride displacement and addition of a second DippIMP moiety on the imine backbone. The heterocycle-based silyl ligands were shown to be sterically and electronically tunable, moderately electron-donating ligands. The presented approach to new silyl ligands avoids strongly reducing conditions and potentially reactive hydrosilane intermediates.

4.
Chemistry ; 24(47): 12236-12240, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29577491

RESUMO

A computationally guided synthetic route to a free silanide derived from tris(3-methylindol-2-yl)methane ([(tmim)Si]- ) through nucleophilic substitution on the SiII precursor (Idipp)SiCl2 is reported (Idipp=2,3-dihydro-1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-2-ylidene). This approach circumvents the need for strained tetrahedral silanes as synthetic intermediates. Computational investigations show that the electron-donating properties of [(tmim)Si]- are close to those of PMe3. Experimentally, the [(tmim)Si]- anion is shown to undergo clean complexation to the base metal salts CuCl and FeCl2 , demonstrating the potential utility as a supporting ligand.

5.
Chemistry ; 22(17): 6087-99, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26962007

RESUMO

A range of silanes was synthesized by the reaction of HSiCl3 with iminopyrrole derivatives in the presence of NEt3 . In certain cases, intramolecular hydrosilylation converts the imine ligand into an amino substituent. This reaction is inhibited by factors such as electron-donating substitution on Si and steric bulk. The monosubstituted ((Dipp) IMP)SiHMeCl ((Dipp) IMP=2-[N-(2,6-diisopropylphenyl)iminomethyl]pyrrolide), is stable towards hydrosilylation, but slow hydrosilylation is observed for ((Dipp) IMP)SiHCl2 . Reaction of two equivalents of (Dipp) IMPH with HSiCl3 results in the hydrosilylation product ((Dipp) AMP)((Dipp) IMP)SiCl ((Dipp) AMP=2-[N-(2,6-diisopropylphenyl)aminomethylene]pyrrolide), but the trisubsitituted ((Dipp) IMP)3 SiH is stable. Monitoring the hydrosilylation reaction of ((Dipp) IMP)SiHCl2 reveals a reactive pathway involving ligand redistribution reactions to form the disubstituted ((Dipp) AMP)((Dipp) IMP)SiCl as an intermediate. The reaction is strongly accelerated in the presence of chloride anions.

6.
Inorg Chem ; 54(22): 11031-6, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26517008

RESUMO

Mononuclear, coordinatively unsaturated rhenium(V) dioxo species of the type XReO2 (X = Me, substituted cyclopentadienyl) have long been postulated as intermediates in rhenium-catalyzed deoxydehydration, but their characterization was precluded because of aggregation into dimeric or oligomeric structures. Using the bulky 1,2,4-tri-tert-butylcyclopentadienyl (Cp(ttt)) ligand, the rhenium(V) dioxo species (Cp(ttt))ReO2 could now be observed, in equilibrium with the dimeric form [(Cp(ttt))Re(O)µ-O]2, and characterized by NMR, IR, and UV-vis spectroscopies, as well as electrospray ionization mass spectrometry. (Cp(ttt))ReO2 is shown to be the primary product of reduction of the rhenium(VII) complex (Cp(ttt))ReO3 with PPh3 and demonstrated to react with ethylene glycol significantly faster than its dimeric counterpart, supporting its role as an intermediate in rhenium-catalyzed deoxydehydration reactions.

7.
ACS Nano ; 7(9): 7913-30, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23941394

RESUMO

We report a study of Zn(2+) by Cd(2+) cation exchange (CE) in colloidal ZnSe nanocrystals (NCs). Our results reveal that CE in ZnSe NCs is a thermally activated isotropic process. The CE efficiency (i.e., fraction of Cd(2+) ions originally in solution, Cdsol, that is incorporated in the ZnSe NC) increases with temperature and depends also on the Cdsol/ZnSe ratio. Interestingly, the reaction temperature can be used as a sensitive parameter to tailor both the composition and the elemental distribution profile of the product (Zn,Cd)Se NCs. At 150 °C ZnSe/CdSe core/shell hetero-NCs (HNCs) are obtained, while higher temperatures (200 and 220 °C) produce (Zn1-xCdx)Se gradient alloy NCs, with increasingly smoother gradients as the temperature increases, until homogeneous alloy NCs are obtained at T ≥ 240 °C. Remarkably, sequential heating (150 °C followed by 220 °C) leads to ZnSe/CdSe core/shell HNCs with thicker shells, rather than (Zn1-xCdx)Se gradient alloy NCs. Thermal treatment at 250 °C converts the ZnSe/CdSe core/shell HNCs into (Zn1-xCdx)Se homogeneous alloy NCs, while preserving the NC shape. A mechanism for the cation exchange in ZnSe NCs is proposed, in which fast CE takes place at the NC surface, and is followed by relatively slower thermally activated solid-state cation diffusion, which is mediated by Frenkel defects. The findings presented here demonstrate that cation exchange in colloidal ZnSe NCs provides a very sensitive tool to tailor the nature and localization regime of the electron and hole wave functions and the optoelectronic properties of colloidal ZnSe-CdSe NCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...