Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 4458, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932106

RESUMO

Isolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the Ga9Rh2 phase and the hitherto not-studied Ga3Rh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds. In combination with catalytic tests of these phases in the challenging propane dehydrogenation and by DFT calculations, we obtain a comprehensive picture of these novel catalyst materials. Their specific crystallographic structure leads to isolated Rhodium sites, which is proposed to be the decisive factor for the catalytic properties of the systems.

3.
Phys Chem Chem Phys ; 23(30): 16324-16333, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34313278

RESUMO

We have examined model systems for the recently reported Pd-Ga Supported Catalytically Active Liquid Metal Solutions (SCALMS) catalysts using near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) under oxidizing conditions. Gallium is known to be highly prone to oxidation and in practical applications, handling of the catalyst material in air or the presence of traces of oxygen in the reactor are unavoidable. Therefore, we expect our results to be of high relevance for the application of Ga-based SCALMS catalysts. Pd-Ga alloy samples of 1.3 and 1.8 at% Pd content were exposed to molecular oxygen at different pressures between 3 × 10-7 and 1 mbar and a temperature of 550 K. We observe the formation of wetting Ga2O3 films upon exposure to molecular oxygen. The absolute thicknesses of the oxide films depend on oxygen pressure, with values ranging from ∼12 Å at 10-7 to 10-5 mbar to ∼50 Å at 1 mbar. The formed metal-oxide interface leads to a redistribution of Pd, which accumulates at the boundary between the wetting oxide film and the metal substrate as a response to the oxide film growth. A maximum Pd 3d intensity is observed at an oxide thickness of 5 Å. For thicker films, the Pd 3d signal and the Ga 3d signal ascribed to the metallic substrate decrease in parallel, which is attributed to the oxide layer growing on top of the liquid metal alloy. From this observation, we conclude that no significant amount of Pd is bound in the newly formed oxide film. Density-functional theory (DFT) calculations support the experimental observations.

4.
J Chem Phys ; 153(10): 104702, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933289

RESUMO

Supported catalytically active liquid metal solutions have been receiving increasing attention recently. We investigated the oxidation behavior of macroscopic Rh-Ga alloy droplets and Rh-Ga model catalyst nanoparticles supported on SiO2/Si(100) with low Rh content (<2.5 at. %) by x-ray photoelectron spectroscopy in ultra-high vacuum and under near-ambient pressure conditions using different photon energies and also using transmission electron microscopy. The experiments are accompanied by computational studies on the Ga oxide/Rh-Ga interface and Rh-Ga intermetallic compounds. For both Rh-Ga alloy droplets and Rh-Ga model catalyst nanoparticles, exposure to molecular oxygen leads to the formation of an oxide shell in which Rh is enriched. Transmission electron microscopy on the Rh-Ga nanoparticles confirms the formation of an ∼4 nm thick gallium oxide film containing Rh. Based on ab initio molecular dynamics and computational studies on the Ga2O3/Ga interface, it is concluded that Rh incorporation into the Ga2O3 film occurs by substituting octahedrally coordinated Ga.

5.
Angew Chem Int Ed Engl ; 58(17): 5763-5768, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30675972

RESUMO

The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.

6.
ACS Catal ; 9(10): 9499-9507, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-32219008

RESUMO

Our contribution demonstrates that rhodium, an element that has barely been reported as an active metal for selective dehydrogenation of alkanes becomes a very active, selective, and robust dehydrogenation catalyst when exposed to propane in the form of single atoms at the interface of a solid-supported, highly dynamic liquid Ga-Rh mixture. We demonstrate that the transition to a fully liquid supported alloy droplet at Ga/Rh ratios above 80, results in a drastic increase in catalyst activity with high propylene selectivity. The combining results from catalytic studies, X-ray photoelectron spectroscopy, IR-spectroscopy under reaction conditions, microscopy, and density-functional theory calculations, we obtained a comprehensive microscopy picture of the working principle of the Ga-Rh supported catalytically active liquid metal solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...