Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 21(1): e12958, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30251327

RESUMO

Professional phagocytic cells such as macrophages are a central part of innate immune defence. They ingest microorganisms into membrane-bound compartments (phagosomes), which acidify and eventually fuse with lysosomes, exposing their contents to a microbicidal environment. Gram-positive Rhodococcus equi can cause pneumonia in young foals and in immunocompromised humans. The possession of a virulence plasmid allows them to subvert host defence mechanisms and to multiply in macrophages. Here, we show that the plasmid-encoded and secreted virulence-associated protein A (VapA) participates in exclusion of the proton-pumping vacuolar-ATPase complex from phagosomes and causes membrane permeabilisation, thus contributing to a pH-neutral phagosome lumen. Using fluorescence and electron microscopy, we show that VapA is also transferred from phagosomes to lysosomes where it permeabilises the limiting membranes for small ions such as protons. This permeabilisation process is different from that of known membrane pore formers as revealed by experiments with artificial lipid bilayers. We demonstrate that, at 24 hr of infection, virulent R. equi is contained in a vacuole, which is enriched in lysosome material, yet possesses a pH of 7.2 whereas phagosomes containing a vapA deletion mutant have a pH of 5.8 and those with virulence plasmid-less sister strains have a pH of 5.2. Experimentally neutralising the macrophage endocytic system allows avirulent R. equi to multiply. This observation is mirrored in the fact that virulent and avirulent R. equi multiply well in extracts of purified lysosomes at pH 7.2 but not at pH 5.1. Together these data indicate that the major function of VapA is to generate a pH-neutral and hence growth-promoting intracellular niche. VapA represents a new type of Gram-positive virulence factor by trafficking from one subcellular compartment to another, affecting membrane permeability, excluding proton-pumping ATPase, and consequently disarming host defences.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Fagossomos/microbiologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Rhodococcus equi/crescimento & desenvolvimento , Rhodococcus equi/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Virulência
2.
J Hepatol ; 66(5): 978-986, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28025060

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cells (LSECs) are prominent liver-resident antigen (cross-)presenting cells. LSEC cross-priming of naïve CD8 T cells does not require CD4 T cell help in contrast to priming by dendritic cells (DC) but leads to the formation of memory T cells that is preceded by transient Granzyme B (GzmB) expression. Here we provide evidence for a so far unrecognized CD4 T helper cell function in LSEC-induced CD8 T cell activation. METHODS: Naïve CD8 T cells and differentiated T helper 1 (Th1) cells were stimulated by antigen-presenting LSEC, and GzmB expression in CD8 T cells was determined by flow cytometry. To identify molecular pathways mediating this GzmB expression, mechanistic proof-of-concept experiments were conducted using stimulatory anti-CD3 antibody together with Hyper-IL-6. RESULTS: We demonstrate that LSECs simultaneously function in antigen co-presentation to CD8 and CD4 T cells. Such co-presentation revealed a function of Th1 cells to increase GzmB expression in CD8 T cells after LSEC but not DC cross-priming. IL-2 released from Th1 cells was required but not sufficient for rapid GzmB induction in CD8 T cells. T cell receptor together with IL-6 trans-signaling was necessary for IL-2 to mediate rapid GzmB induction. CONCLUSIONS: Our findings indicate that LSECs can serve as a platform to facilitate CD4-CD8 T cell crosstalk enhancing the immune function of LSECs to cross-prime CD8 T cells. IL-6 trans-signaling-mediated responsiveness for IL-2 inducing sustained GzmB expression in CD8 T cells reveals unique mechanisms of CD4 T cell help and CD8 T cell differentiation through liver-resident antigen-presenting cells. LAY SUMMARY: Our findings demonstrate that LSEC co-present antigen to CD8 and CD4 T cells and thereby enable CD4 T cell help for LSEC-priming of CD8 T cells. This CD4 T cell help selectively enhances the rapid upregulation of GzmB and effector function of LSEC-primed CD8 T cells thereby enhancing functional differentiation towards CD8 effector T cells.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada , Células Endoteliais/imunologia , Interleucina-2/fisiologia , Fígado/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular , Células Cultivadas , Granzimas/análise , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...