Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 50(6): 729-743.e5, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31402282

RESUMO

Pacemaker cardiomyocytes that create the sinoatrial node are essential for the initiation and maintenance of proper heart rhythm. However, illuminating developmental cues that direct their differentiation has remained particularly challenging due to the unclear cellular origins of these specialized cardiomyocytes. By discovering the origins of pacemaker cardiomyocytes, we reveal an evolutionarily conserved Wnt signaling mechanism that coordinates gene regulatory changes directing mesoderm cell fate decisions, which lead to the differentiation of pacemaker cardiomyocytes. We show that in zebrafish, pacemaker cardiomyocytes derive from a subset of Nkx2.5+ mesoderm that responds to canonical Wnt5b signaling to initiate the cardiac pacemaker program, including activation of pacemaker cell differentiation transcription factors Isl1 and Tbx18 and silencing of Nkx2.5. Moreover, applying these developmental findings to human pluripotent stem cells (hPSCs) notably results in the creation of hPSC-pacemaker cardiomyocytes, which successfully pace three-dimensional bioprinted hPSC-cardiomyocytes, thus providing potential strategies for biological cardiac pacemaker therapy.


Assuntos
Proteína Homeobox Nkx-2.5/metabolismo , Mesoderma/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Sequência de Bases , Bioimpressão , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação com Perda de Função/genética , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco/metabolismo , Peixe-Zebra
2.
Stem Cell Reports ; 11(3): 828-841, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30122443

RESUMO

To facilitate understanding of human cardiomyocyte (CM) subtype specification, and the study of ventricular CM biology in particular, we developed a broadly applicable strategy for enrichment of ventricular cardiomyocytes (VCMs) derived from human embryonic stem cells (hESCs). A bacterial artificial chromosome transgenic H9 hESC line in which GFP expression was driven by the human ventricular-specific myosin light chain 2 (MYL2) promoter was generated, and screened to identify cell-surface markers specific for MYL2-GFP-expressing VCMs. A CD77+/CD200- cell-surface signature facilitated isolation of >97% cardiac troponin I-positive cells from H9 hESC differentiation cultures, with 65% expressing MYL2-GFP. This study provides a tool for VCM enrichment when using some, but not all, human pluripotent stem cell lines. Tools generated in this study can be utilized toward understanding CM subtype specification, and enriching for VCMs for therapeutic applications.


Assuntos
Ventrículos do Coração/citologia , Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/citologia , Antígenos CD/análise , Miosinas Cardíacas/análise , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Humanos , Cadeias Leves de Miosina/análise , Triexosilceramidas/análise
3.
Stem Cell Reports ; 10(1): 87-100, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29249665

RESUMO

The identification of cell surface proteins on stem cells or stem cell derivatives is a key strategy for the functional characterization, isolation, and understanding of stem cell population dynamics. Here, using an integrated mass spectrometry- and microarray-based approach, we analyzed the surface proteome and transcriptome of cardiac progenitor cells (CPCs) generated from the stage-specific differentiation of mouse and human pluripotent stem cells. Through bioinformatics analysis, we have identified and characterized FZD4 as a marker for lateral plate mesoderm. Additionally, we utilized FZD4, in conjunction with FLK1 and PDGFRA, to further purify CPCs and increase cardiomyocyte (CM) enrichment in both mouse and human systems. Moreover, we have shown that NORRIN presented to FZD4 further increases CM output via proliferation through the canonical WNT pathway. Taken together, these findings demonstrate a role for FZD4 in mammalian cardiac development.


Assuntos
Antígenos de Diferenciação/metabolismo , Proteínas do Olho/metabolismo , Receptores Frizzled/metabolismo , Mesoderma/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Humanos , Mesoderma/citologia , Camundongos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
4.
Nat Biotechnol ; 32(10): 1026-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25240927

RESUMO

The epicardium supports cardiomyocyte proliferation early in development and provides fibroblasts and vascular smooth muscle cells to the developing heart. The epicardium has been shown to play an important role during tissue remodeling after cardiac injury, making access to this cell lineage necessary for the study of regenerative medicine. Here we describe the generation of epicardial lineage cells from human pluripotent stem cells by stage-specific activation of the BMP and WNT signaling pathways. These cells display morphological characteristics and express markers of the epicardial lineage, including the transcription factors WT1 and TBX18 and the retinoic acid-producing enzyme ALDH1A2. When induced to undergo epithelial-to-mesenchymal transition, the cells give rise to populations that display characteristics of the fibroblast and vascular smooth muscle lineages. These findings identify BMP and WNT as key regulators of the epicardial lineage in vitro and provide a model for investigating epicardial function in human development and disease.


Assuntos
Linhagem da Célula/fisiologia , Pericárdio/citologia , Células-Tronco Pluripotentes/citologia , Aldeído Desidrogenase/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Camundongos , Miócitos Cardíacos/citologia , Via de Sinalização Wnt/fisiologia
5.
Cell Stem Cell ; 8(2): 228-40, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295278

RESUMO

Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.


Assuntos
Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/fisiologia , Citometria de Fluxo , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...