Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 55(5): 813-823, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728986

RESUMO

INTRODUCTION: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS: Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS: All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS: These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.


Assuntos
Osso e Ossos , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Microtomografia por Raio-X , Traumatismos da Medula Espinal/terapia , Perfusão
2.
J Appl Physiol (1985) ; 131(4): 1288-1299, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473574

RESUMO

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.


Assuntos
Osteogênese , Traumatismos da Medula Espinal , Animais , Osso e Ossos , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Microtomografia por Raio-X
3.
Neurotrauma Rep ; 1(1): 17-31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223527

RESUMO

Spinal cord injury (SCI) is associated with obesity and is a risk factor for type 2 diabetes mellitus (T2DM). Immobilization, muscle atrophy, obesity, and loss of sympathetic innervation to the liver are believed to contribute to risks of these abnormalities. Systematic study of the mechanisms underlying SCI-induced metabolic disorders has been limited by a lack of animal models of insulin resistance following SCI. Therefore, the effects of a high-fat diet (HFD), which causes weight gain and glucose intolerance in neurologically intact mice, was tested in mice that had undergone a spinal cord transection at thoracic vertebra 10 (T10) or a sham-transection. At 84 days after surgery, Sham-HFD and SCI-HFD mice showed impaired intraperitoneal glucose tolerance when compared with Sham control (Sham-Con) or SCI control (SCI-Con) mice fed a standard control chow. Glucose tolerance in SCI-Con mice was comparable to that of Sham-Con mice. The mass of paralyzed skeletal muscle, liver, and epididymal, inguinal, and omental fat deposits were lower in SCI versus Sham groups, with lower liver mass present in SCI-HFD versus SCI-Con animals. SCI also produced sublesional bone loss, with no differences between SCI-Con and SCI-HFD groups. The results suggest that administration of a HFD to mice after SCI may provide a model to better understand mechanisms leading to insulin resistance post-SCI, as well as an approach to study pathogenesis of glucose intolerance that is independent of obesity.

4.
J Neurosci Res ; 98(5): 843-868, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31797423

RESUMO

Loading and testosterone may influence musculoskeletal recovery after spinal cord injury (SCI). Our objectives were to determine (a) the acute effects of bodyweight-supported treadmill training (TM) on hindlimb cancellous bone microstructure and muscle mass in adult rats after severe contusion SCI and (b) whether longer-term TM with adjuvant testosterone enanthate (TE) delivers musculoskeletal benefit. In Study 1, TM (40 min/day, 5 days/week, beginning 1 week postsurgery) did not prevent SCI-induced hindlimb cancellous bone loss after 3 weeks. In Study 2, TM did not attenuate SCI-induced plantar flexor muscles atrophy nor improve locomotor recovery after 4 weeks. In our main study, SCI produced extensive distal femur and proximal tibia cancellous bone deficits, a deleterious slow-to-fast fiber-type transition in soleus, lower muscle fiber cross-sectional area (fCSA), impaired muscle force production, and levator ani/bulbocavernosus (LABC) muscle atrophy after 8 weeks. TE alone (7.0 mg/week) suppressed bone resorption, attenuated cancellous bone loss, constrained the soleus fiber-type transition, and prevented LABC atrophy. In comparison, TE+TM concomitantly suppressed bone resorption and stimulated bone formation after SCI, produced near-complete cancellous bone preservation, prevented the soleus fiber-type transition, attenuated soleus fCSA atrophy, maintained soleus force production, and increased LABC mass. 75% of SCI+TE+TM animals recovered voluntary over-ground hindlimb stepping, while no SCI and only 20% of SCI+TE animals regained stepping ability. Positive associations between testosterone and locomotor function suggest that TE influenced locomotor recovery. In conclusion, short-term TM alone did not improve bone, muscle, or locomotor recovery in adult rats after severe SCI, while longer-term TE+TM provided more comprehensive musculoskeletal benefit than TE alone.


Assuntos
Osso Esponjoso/fisiopatologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/reabilitação , Testosterona/uso terapêutico , Animais , Osso Esponjoso/efeitos dos fármacos , Quimioterapia Combinada , Masculino , Músculo Esquelético/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Testosterona/administração & dosagem
5.
Comp Med ; 69(5): 384-400, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575381

RESUMO

Periodontitis is an important public health concern worldwide. Because rodents from the genus Rattus are resistant to spontaneous periodontitis, experimental periodontitis must be initiated by mechanical procedures and interventions. Due to their exacerbated Th1 response and imbalanced Th17 regulatory T-cell responses, Lewis rats are highly susceptible to inducible inflammatory and autoimmune diseases. We hypothesized that feeding Lewis rats a diet high in sucrose and casein (HSC) would alter the oral microenvironment and induce inflammation and the development of periodontitis lesions without mechanical intervention. A baseline group (BSL, n = 8) was euthanized at age 6 wk. Beginning at 6 wk of age, 2 groups of Lewis rats were fed standard (STD, n = 12) or HSC (n = 20) chow and euthanized at 29 wk of age. We evaluated the degree of periodontitis through histology and µCT of maxillae and mandibles. The HSC-induced inflammatory response of periodontal tissues was assessed by using immunohistochemistry. Gene expression analysis of inflammatory cytokines associated with Th1 and Th17 responses, innate immunity cytokines, and tissue damage in response to bacteria were assessed also. The potential systemic effects of HSC diet were evaluated by assessing body composition and bone densitometry endpoints; serum leptin and insulin concentrations; and gene expression of inflammatory cytokines in the liver. Placing Lewis rats on HSC diet for 24 wk induced a host Th1-immune response in periodontal tissues and mild to moderate, generalized periodontitis characterized by inflammatory cell infiltration (predominantly T cells and macrophages), osteoclast resorption of alveolar bone, and hyperplasia and migration of the gingival epithelium. HSC-fed Lewis rats developed periodontitis without mechanical intervention in the oral cavity and in the absence of any noteworthy metabolic abnormalities. Consequently, the rat model we described here may be a promising approach for modeling mild to moderate periodontitis that is similar in presentation to the human disease.


Assuntos
Modelos Animais de Doenças , Periodontite/induzido quimicamente , Ratos Endogâmicos Lew , Animais , Caseínas/farmacologia , Humanos , Ratos , Sacarose/farmacologia
6.
Calcif Tissue Int ; 104(1): 79-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218117

RESUMO

To elucidate mechanisms of bone loss after spinal cord injury (SCI), we evaluated the time-course of cancellous and cortical bone microarchitectural deterioration via microcomputed tomography, measured histomorphometric and circulating bone turnover indices, and characterized the development of whole bone mechanical deficits in a clinically relevant experimental SCI model. 16-weeks-old male Sprague-Dawley rats received T9 laminectomy (SHAM, n = 50) or moderate-severe contusion SCI (n = 52). Outcomes were assessed at 2-weeks, 1-month, 2-months, and 3-months post-surgery. SCI produced immediate sublesional paralysis and persistent hindlimb locomotor impairment. Higher circulating tartrate-resistant acid phosphatase 5b (bone resorption marker) and lower osteoblast bone surface and histomorphometric cancellous bone formation indices were present in SCI animals at 2-weeks post-surgery, suggesting uncoupled cancellous bone turnover. Distal femoral and proximal tibial cancellous bone volume, trabecular thickness, and trabecular number were markedly lower after SCI, with the residual cancellous network exhibiting less trabecular connectivity. Periosteal bone formation indices were lower at 2-weeks and 1-month post-SCI, preceding femoral cortical bone loss and the development of bone mechanical deficits at the distal femur and femoral diaphysis. SCI animals also exhibited lower serum testosterone than SHAM, until 2-months post-surgery, and lower serum leptin throughout. Our moderate-severe contusion SCI model displayed rapid cancellous bone deterioration and more gradual cortical bone loss and development of whole bone mechanical deficits, which likely resulted from a temporal uncoupling of bone turnover, similar to the sequalae observed in the motor-complete SCI population. Low testosterone and/or leptin may contribute to the molecular mechanisms underlying bone deterioration after SCI.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/metabolismo , Osteogênese/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/metabolismo , Osso Cortical/metabolismo , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...