Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 95(6): 1684-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039232

RESUMO

Given the health and economic burden associated with the widespread occurrence of co-infections in humans and agricultural animals, understanding how coinfections contribute to host heterogeneity to infection and transmission is critical if we are to assess risk of infection based on host characteristics. Here, we examine whether host heterogeneity to infection leads to similar heterogeneity in transmission in a population of rabbits single and co-infected with two helminths and monitored monthly for eight years. Compared to single infections, co-infected rabbits carried higher Trichostrongylus retortaeformis intensities, shorter worms with fewer eggs in utero, and shed similar numbers of parasite eggs. In contrast, the same co-infected rabbits harbored fewer Graphidium strigosum with longer bodies and more eggs in utero, and shed more eggs of this helminth. A positive density-dependent relationship between fecundity and intensity was found for T. retortaeformis but not G. strigosum in co-infected rabbits. Juvenile rabbits contributed to most of the infection and shedding of T. retortaeformis, while adult hosts were more important for G. strigosum dynamics of infection and transmission, and this pattern was consistent in single and co-infected individuals. This host-parasite system suggests that we cannot predict the pattern of parasite shedding during co-infections based on intensity of infection alone. We suggest that a mismatching between susceptibility and infectiousness should be expected in helminth coinfections and should not be overlooked.


Assuntos
Coinfecção/veterinária , Fezes/parasitologia , Helmintíase Animal/parasitologia , Helmintos/classificação , Coelhos/parasitologia , Animais , Helmintos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...