Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 78(14): 2867-72, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20715055

RESUMO

Recent crystal structures of the multidrug ATP-binding cassette (ABC) exporters Sav1866 from Staphylococcus aureus, MsbA from Escherichia coli, Vibrio cholera, and Salmonella typhimurium, and mouse ABCB1a suggest a common alternating access mechanism for export. However, the molecular framework underlying this mechanism is critically dependent on assumed conformational relationships between nonidentical crystal structures and therefore requires biochemical verification. The structures of homodimeric MsbA reveal a pair of glutamate residues (E208 and E208') in the intracellular domains of its two half-transporters, close to the nucleotide-binding domains (NBDs), which are in close proximity of each other in the outward-facing state but not in the inward-facing state. Using intermolecular cysteine crosslinking between E208C and E208C' in E. coli MsbA, we demonstrate that the NBDs dissociate in nucleotide-free conditions and come close on ATP binding and ADP·vanadate trapping. Interestingly, ADP alone separates the half-transporters like a nucleotide-free state, presumably for the following catalytic cycle. Our data fill persistent gaps in current studies on the conformational dynamics of a variety of ABC exporters. Based on a single biochemical method, the findings describe a conformational cycle for a single ABC exporter at major checkpoints of the ATPase reaction under experimental conditions, where the exporter is transport active.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Dissulfetos , Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica
2.
PLoS One ; 4(7): e6137, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19593434

RESUMO

BACKGROUND: LmrA is a multidrug ATP-binding cassette (ABC) transporter from Lactococcus lactis with no known physiological substrate, which can transport a wide range of chemotherapeutic agents and toxins from the cell. The protein can functionally replace the human homologue ABCB1 (also termed multidrug resistance P-glycoprotein MDR1) in lung fibroblast cells. Even though LmrA mediates ATP-dependent transport, it can use the proton-motive force to transport substrates, such as ethidium bromide, across the membrane by a reversible, H(+)-dependent, secondary-active transport reaction. The mechanism and physiological context of this reaction are not known. METHODOLOGY/PRINCIPAL FINDINGS: We examined ion transport by LmrA in electrophysiological experiments and in transport studies using radioactive ions and fluorescent ion-selective probes. Here we show that LmrA itself can transport NaCl by a similar secondary-active mechanism as observed for ethidium bromide, by mediating apparent H(+)-Na(+)-Cl(-) symport. Remarkably, LmrA activity significantly enhances survival of high-salt adapted lactococcal cells during ionic downshift. CONCLUSIONS/SIGNIFICANCE: The observations on H(+)-Na(+)-Cl(-) co-transport substantiate earlier suggestions of H(+)-coupled transport by LmrA, and indicate a novel link between the activity of LmrA and salt stress. Our findings demonstrate the relevance of investigations into the bioenergetics of substrate translocation by ABC transporters for our understanding of fundamental mechanisms in this superfamily. This study represents the first use of electrophysiological techniques to analyze substrate transport by a purified multidrug transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Cloreto de Sódio/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Sequência de Bases , Primers do DNA , Transporte de Íons , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutagênese Sítio-Dirigida , Prótons , Espectrometria de Massas por Ionização por Electrospray
3.
Biochemistry ; 47(41): 10904-14, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18803398

RESUMO

The ATP-binding cassette transporter MsbA in Gram-negative bacteria can transport antibiotics and toxic ions. However, the key functional regions in MsbA which determine substrate specificity remain to be identified. We recently examined published mutations in the human MsbA homologue ABCB1 that alter multidrug transport in cells and identified mutations that affect the specificity for individual substrates (termed change-in-specificity mutations). When superimposed on the corrected 3.7 A resolution crystal structure of homodimeric MsbA from S almonella typhimurium, these change-in-specificity mutations colocalize in a major groove in each of the two "wings" of transmembrane helices (TMHs) that point away from one another toward the periplasm. Near the apex of the groove, the periplasmic side of TMH 6 in both monomers contains a hotspot of change-in-specificity mutations and residues which, when replaced with cysteines in ABCB1, covalently interact with thiol-reactive drug analogues. We tested the importance of this region of TMH 6 for drug-protein interactions in Escherichia coli MsbA. In particular, we focused on conserved S289 and S290 residues in the hotspot. Their simultaneous replacement with alanine (termed the SASA mutant) significantly reduced the level of binding and transport of ethidium and Taxol by MsbA, whereas the interactions with Hoechst 33342 and erythromycin remained unaffected. Hence, the SASA mutation is associated with a change-in-specificity phenotype analogous to that of the change-in-specificity mutations in ABCB1. This study demonstrates for the first time the significance of TMH 6 for drug binding and transport by MsbA. Based on these data, a possible mechanism for alternating access of drug-binding surfaces in MsbA is discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Bactérias/fisiologia , Preparações Farmacêuticas/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Primers do DNA , Polarização de Fluorescência , Mutagênese Sítio-Dirigida
4.
Biochem Pharmacol ; 74(5): 672-8, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17624317

RESUMO

Multidrug resistance of pathogenic microorganisms and mammalian tumors can be associated with the overexpression of multidrug transporters. These integral membrane proteins are capable of extruding a wide range of structurally unrelated compounds from the cell. Among the different classes of multidrug transporters are the ATP binding cassette (ABC) transporters, which are dependent on the binding and hydrolysis of ATP. In the past five years, many researchers have built homology models of ABC extrusion systems using the atomic coordinates of crystallized MsbA, a lipopolysaccharide transporter in Gram-negative bacteria. Likewise, we have previously used the Vibrio cholera MsbA structure as a template in the modeling of the multidrug transporter LmrA from Lactococcus lactis. In view of the recently discovered inaccuracies in the MsbA structure, we have remodelled LmrA using the atomic coordinates of the MsbA homologue Sav1866 from Staphylococcus aureus. To compare and test our MsbA-based and Sav1866-based LmrA models we performed cysteine cross-linking at three key positions in LmrA. The pattern of cross-linking at these positions was consistent with the overall topology of transmembrane helices in Sav1866, suggesting that its crystal structure might be physiologically relevant. We recently identified E314 as a residue important in proton conduction by LmrA. The predicted location of this residue at the interface between the two half-transporters in the Sav1866-based homodimer, within the inner leaflet of the phospholipid bilayer, provides a new structural basis for the role of E314 in LmrA-mediated transport.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/metabolismo , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Eletricidade Estática , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo
5.
Trends Pharmacol Sci ; 27(4): 195-203, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16545467

RESUMO

ATP-binding-cassette (ABC) multidrug transporters confer multidrug resistance to pathogenic microorganisms and human tumour cells by mediating the extrusion of structurally unrelated chemotherapeutic drugs from the cell. The molecular basis by which ABC multidrug transporters bind and transport drugs is far from clear. Genetic analyses during the past 14 years reveal that the replacement of many individual amino acids in mammalian multidrug resistance P-glycoproteins can affect cellular resistance to drugs, but these studies have failed to identify specific regions in the primary amino acid sequence that are part of a defined drug-binding pocket. The recent publication of an X-ray crystallographic structure of the bacterial P-glycoprotein homologue MsbA and an MsbA-based homology model of human P-glycoprotein creates an opportunity to compare the original mutagenesis data with the three-dimensional structures of transporters. Our comparisons reveal that mutations that alter specificity are present in three-dimensional 'hotspot' regions in the membrane domains of P-glycoprotein.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Sítios de Ligação/genética , Transporte Biológico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína
6.
J Bacteriol ; 187(18): 6363-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16159769

RESUMO

MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with K(i) values of 16 and 11 microM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a K(i) of 57 microM, in a similar range as the K(i) for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Lipídeo A/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Preparações Farmacêuticas/metabolismo , Transporte Biológico , Escherichia coli/enzimologia , Lactococcus lactis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
7.
FASEB J ; 19(12): 1698-700, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16040836

RESUMO

The ATP binding cassette (ABC) transporter LmrA from the bacterium Lactococcus lactis is a homolog of the human multidrug resistance P-glycoprotein (ABCB1), the activity of which impairs the efficacy of chemotherapy. In a previous study, LmrA was shown to mediate ethidium efflux by an ATP-dependent proton-ethidium symport reaction in which the carboxylate E314 is critical. The functional importance of this key residue for ABC proteins was suggested by its conservation in a wider family of related transporters; however, the structural basis of its role was not apparent. Here, we have used homology modeling to define the structural environment of E314. The residue is nested in a hydrophobic environment that probably elevates its pKa, accounting for the pH dependency of drug efflux that we report in this work. Functional analyses of wild-type and mutant proteins in cells and proteoliposomes support our proposal for the mechanistic role of E314 in proton-coupled ethidium transport. As the carboxylate is known to participate in proton translocation by secondary-active transporters, our observations suggest that this substituent can play a similar role in the activity of ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Ácidos Carboxílicos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Bases de Dados de Proteínas , Resistência Microbiana a Medicamentos , Etídio/química , Concentração de Íons de Hidrogênio , Cinética , Lactococcus lactis/metabolismo , Potenciais da Membrana , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Plasmídeos/metabolismo , Prótons , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...