Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(21): 6077-6092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37698497

RESUMO

Understanding the effects of intensification of Amazon basin hydrological cycling-manifest as increasingly frequent floods and droughts-on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest "tipping points". Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001-2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015-2016 El Niño drought and La Niña 2008-2009 wet events. We found that the forest responded strongly to El Niño-Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). Partitioning ET by an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress-induced reductions in canopy conductance (Gs ) drove T declines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higher T and lower E, with little change in seasonal ET. Both El Niño-Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet-season leaf area index. However, only during El Niño 2015-2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown of Gs and significant leaf shedding). Drought-reduced T and Gs , higher H and E, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post-drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin-scale threshold-crossing changes in forest energy and water cycling, leading to slow-down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.

2.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579162

RESUMO

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

3.
Sci Data ; 9(1): 361, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750672

RESUMO

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

4.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314726

RESUMO

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Assuntos
Sequestro de Carbono , Ecossistema , Regiões Árticas , Dióxido de Carbono , Mudança Climática , Plantas , Estações do Ano , Solo , Tundra
5.
Science ; 374(6572): 1275-1280, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855495

RESUMO

The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO2), yet estimates of air-sea CO2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO2 exchange by relating fluxes to horizontal and vertical CO2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO2 gradient provide robust flux constraints. We found an annual mean flux of ­0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009­2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO2 (Pco2)­based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations.

6.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930838

RESUMO

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Biomassa , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera , Ecossistema , Incêndios , Ozônio/análise , Ozônio/química
7.
Environ Sci Process Impacts ; 23(12): 1914-1929, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34739015

RESUMO

Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Its anthropogenic emissions are regulated by global, regional, and local policies. Here, we investigate Hg sources in the coastal city of Boston, the third largest metropolitan area in the Northeastern United States. With a median of 1.37 ng m-3, atmospheric Hg concentrations measured from August 2017 to April 2019 were at the low end of the range reported in the Northern Hemisphere and in the range reported at North American rural sites. Despite relatively low ambient Hg concentrations, we estimate anthropogenic emissions to be 3-7 times higher than in current emission inventories using a measurement-model framework, suggesting an underestimation of small point and/or nonpoint emissions. We also test the hypothesis that a legacy Hg source from the ocean contributes to atmospheric Hg concentrations in the study area; legacy emissions (recycling of previously deposited Hg) account for ∼60% of Hg emitted annually worldwide (and much of this recycling takes place through the oceans). We find that elevated concentrations observed during easterly oceanic winds can be fully explained by low wind speeds and recirculating air allowing for accumulation of land-based emissions. This study suggests that the influence of nonpoint land-based emissions may be comparable in size to point sources in some regions and highlights the benefits of further top-down studies in other areas.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Boston , Monitoramento Ambiental , Humanos , Massachusetts , Mercúrio/análise , Oceanos e Mares
8.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697236

RESUMO

Across many cities, estimates of methane emissions from natural gas (NG) distribution and end use based on atmospheric measurements have generally been more than double bottom-up estimates. We present a top-down study of NG methane emissions from the Boston urban region spanning 8 y (2012 to 2020) to assess total emissions, their seasonality, and trends. We used methane and ethane observations from five sites in and around Boston, combined with a high-resolution transport model, to calculate methane emissions of 76 ± 18 Gg/yr, with 49 ± 9 Gg/yr attributed to NG losses. We found no significant trend in the NG loss rate over 8 y, despite efforts from the city and state to increase the rate of repairing NG pipeline leaks. We estimate that 2.5 ± 0.5% of the gas entering the urban region is lost, approximately three times higher than bottom-up estimates. We saw a strong correlation between top-down NG emissions and NG consumed on a seasonal basis. This suggests that consumption-driven losses, such as in transmission or end-use, may be a large component of emissions that is missing from inventories, and require future policy action. We also compared top-down NG emission estimates from six US cities, all of which indicate significant missing sources in bottom-up inventories. Across these cities, we estimate NG losses from distribution and end use amount to 20 to 36% of all losses from the US NG supply chain, with a total loss rate of 3.3 to 4.7% of NG from well pad to urban consumer, notably larger than the current Environmental Protection Agency estimate of 1.4% [R. A. Alvarez et al., Science 361, 186-188 (2018)].

9.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193415

RESUMO

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour-1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.

10.
Environ Sci Technol ; 55(3): 1487-1496, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33474936

RESUMO

Diverse airborne microbes affect human health and biodiversity, and the Sahara region of West Africa is a globally important source region for atmospheric dust. We collected size-fractionated (>10, 10-2.5, 2.5-1.0, 1.0-0.5, and <0.5 µm) atmospheric particles in Mali, West Africa and conducted the first cultivation-independent study of airborne microbes in this region using 16S rRNA gene sequencing. Abundant and diverse microbes were detected in all particle size fractions at levels higher than those previously hypothesized for desert regions. Average daily abundance was 1.94 × 105 16S rRNA copies/m3. Daily patterns in abundance for particles <0.5 µm differed significantly from other size fractions likely because they form mainly in the atmosphere and have limited surface resuspension. Particles >10 µm contained the greatest fraction of daily abundance (51-62%) and had significantly greater diversity than smaller particles. Greater bacterial abundance of particles >2.5 µm that are bigger than the average bacterium suggests that most airborne bacteria are present as aggregates or attached to particles rather than as free-floating cells. Particles >10 µm have very short atmospheric lifetimes and thus tend to have more localized origins. We confirmed the presence of several potential pathogens using polymerase chain reaction that are candidates for viability and strain testing in future studies. These species were detected on all particle sizes tested, including particles <2.5 µm that are expected to undergo long-range transport. Overall, our results suggest that the composition and sources of airborne microbes can be better discriminated by collecting size-fractionated samples.


Assuntos
Poeira , Microbiota , África do Norte , Microbiologia do Ar , Poeira/análise , Humanos , Mali , Tamanho da Partícula , RNA Ribossômico 16S/genética
11.
Biogeosciences ; 16(1): 117-134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708981

RESUMO

We have compared a suite of recent global CO2 atmospheric inversion results to independent airborne observations and to each other, to assess their dependence on differences in northern extratropical (NET) vertical transport and to identify some of the drivers of model spread. We evaluate posterior CO2 concentration profiles against observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) aircraft campaigns over the mid-Pacific in 2009-2011. Although the models differ in inverse approaches, assimilated observations, prior fluxes, and transport models, their broad latitudinal separation of land fluxes has converged significantly since the Atmospheric Carbon Cycle Inversion Intercomparison (TransCom 3) and the REgional Carbon Cycle Assessment and Processes (RECCAP) projects, with model spread reduced by 80% since TransCom 3 and 70% since RECCAP. Most modeled CO2 fields agree reasonably well with the HIPPO observations, specifically for the annual mean vertical gradients in the Northern Hemisphere. Northern Hemisphere vertical mixing no longer appears to be a dominant driver of northern versus tropical (T) annual flux differences. Our newer suite of models still gives northern extratropical land uptake that is modest relative to previous estimates (Gurney et al., 2002; Peylin et al., 2013) and near-neutral tropical land uptake for 2009-2011. Given estimates of emissions from deforestation, this implies a continued uptake in intact tropical forests that is strong relative to historical estimates (Gurney et al., 2002; Peylin et al., 2013). The results from these models for other time periods (2004-2014, 2001-2004, 1992-1996) and reevaluation of the TransCom 3 Level 2 and RECCAP results confirm that tropical land carbon fluxes including deforestation have been near neutral for several decades. However, models still have large disagreements on ocean-land partitioning. The fossil fuel (FF) and the atmospheric growth rate terms have been thought to be the best-known terms in the global carbon budget, but we show that they currently limit our ability to assess regional-scale terrestrial fluxes and ocean-land partitioning from the model ensemble.

12.
Environ Sci Technol ; 53(15): 8957-8966, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31265266

RESUMO

Simulation of the planetary boundary layer (PBL) is key for forecasting air quality and estimating greenhouse gas (GHG) emissions in cities. Here we conducted the first long-term and continuous study of PBL heights (PBLHs) in Boston, MA, using a compact lidar instrument. We developed an image recognition algorithm to estimate PBLHs from the lidar measurements and evaluated simulations of the PBL from seven numerical weather prediction (NWP) model versions, which showed different systematic errors and variability in simulating the PBLHs (discrepancies from -2.5 to 4.0 km). The NWP model with the best overall agreement for the fully developed PBL had R2 = 0.72 and a bias of only 0.128 km. However, this model predicted a notable number of anomalously high carbon dioxide concentrations at ground stations, because it occasionally significantly underestimated the PBLH. We also developed a novel method that combines lidar data with footprints from a Lagrangian particle dispersion model to identify long-range transport of air pollution in the nocturnal residual layer. Our framework was powerful in evaluating the performance of models used to estimate air pollution and GHG emissions in cities, which is critical to track progress on emission reduction targets and guide effective policies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gases de Efeito Estufa , Boston , Cidades , Monitoramento Ambiental , Modelos Teóricos
13.
Geophys Res Lett ; 46(10): 5601-5613, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32606484

RESUMO

We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.

14.
Proc Natl Acad Sci U S A ; 115(29): 7491-7496, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967154

RESUMO

With the pending withdrawal of the United States from the Paris Climate Accord, cities are now leading US actions toward reducing greenhouse gas emissions. Implementing effective mitigation strategies requires the ability to measure and track emissions over time and at various scales. We report CO2 emissions in the Boston, MA, urban region from September 2013 to December 2014 based on atmospheric observations in an inverse model framework. Continuous atmospheric measurements of CO2 from five sites in and around Boston were combined with a high-resolution bottom-up CO2 emission inventory and a Lagrangian particle dispersion model to determine regional emissions. Our model-measurement framework incorporates emissions estimates from submodels for both anthropogenic and biological CO2 fluxes, and development of a CO2 concentration curtain at the boundary of the study region based on a combination of tower measurements and modeled vertical concentration gradients. We demonstrate that an emission inventory with high spatial and temporal resolution and the inclusion of urban biological fluxes are both essential to accurately modeling annual CO2 fluxes using surface measurement networks. We calculated annual average emissions in the Boston region of 0.92 kg C·m-2·y-1 (95% confidence interval: 0.79 to 1.06), which is 14% higher than the Anthropogenic Carbon Emissions System inventory. Based on the capability of the model-measurement approach demonstrated here, our framework should be able to detect changes in CO2 emissions of greater than 18%, providing stakeholders with critical information to assess mitigation efforts in Boston and surrounding areas.


Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Modelos Teóricos , Reforma Urbana , Boston
15.
Science ; 361(6398): 186-188, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29930092

RESUMO

Methane emissions from the U.S. oil and natural gas supply chain were estimated by using ground-based, facility-scale measurements and validated with aircraft observations in areas accounting for ~30% of U.S. gas production. When scaled up nationally, our facility-based estimate of 2015 supply chain emissions is 13 ± 2 teragrams per year, equivalent to 2.3% of gross U.S. gas production. This value is ~60% higher than the U.S. Environmental Protection Agency inventory estimate, likely because existing inventory methods miss emissions released during abnormal operating conditions. Methane emissions of this magnitude, per unit of natural gas consumed, produce radiative forcing over a 20-year time horizon comparable to the CO2 from natural gas combustion. Substantial emission reductions are feasible through rapid detection of the root causes of high emissions and deployment of less failure-prone systems.

16.
New Phytol ; 219(3): 914-931, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29786858

RESUMO

The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.


Assuntos
Secas , Florestas , Biomassa , Dióxido de Carbono/farmacologia , Simulação por Computador , Geografia , Modelos Teóricos , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Chuva , América do Sul
17.
Proc Natl Acad Sci U S A ; 114(25): E4905-E4913, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584119

RESUMO

We present observations defining (i) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; (ii) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; (iii) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and (iv) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of ∼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate-water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO2 and CH4.

18.
Proc Natl Acad Sci U S A ; 114(21): 5361-5366, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484001

RESUMO

High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

20.
Glob Chang Biol ; 23(2): 906-919, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27514856

RESUMO

Molecular hydrogen (H2 ) is an atmospheric trace gas with a large microbe-mediated soil sink, yet cycling of this compound throughout ecosystems is poorly understood. Measurements of the sources and sinks of H2 in various ecosystems are sparse, resulting in large uncertainties in the global H2 budget. Constraining the H2 cycle is critical to understanding its role in atmospheric chemistry and climate. We measured H2 fluxes at high frequency in a temperate mixed deciduous forest for 15 months using a tower-based flux-gradient approach to determine both the soil-atmosphere and the net ecosystem flux of H2 . We found that Harvard Forest is a net H2 sink (-1.4 ± 1.1 kg H2  ha-1 ) with soils as the dominant H2 sink (-2.0 ± 1.0 kg H2  ha-1 ) and aboveground canopy emissions as the dominant H2 source (+0.6 ± 0.8 kg H2  ha-1 ). Aboveground emissions of H2 were an unexpected and substantial component of the ecosystem H2 flux, reducing net ecosystem uptake by 30% of that calculated from soil uptake alone. Soil uptake was highly seasonal (July maximum, February minimum), positively correlated with soil temperature and negatively correlated with environmental variables relevant to diffusion into soils (i.e., soil moisture, snow depth, snow density). Soil microbial H2 uptake was correlated with rhizosphere respiration rates (r = 0.8, P < 0.001), and H2 metabolism yielded up to 2% of the energy gleaned by microbes from carbon substrate respiration. Here, we elucidate key processes controlling the biosphere-atmosphere exchange of H2 and raise new questions regarding the role of aboveground biomass as a source of atmospheric H2 and mechanisms linking soil H2 and carbon cycling. Results from this study should be incorporated into modeling efforts to predict the response of the H2 soil sink to changes in anthropogenic H2 emissions and shifting soil conditions with climate and land-use change.


Assuntos
Ecossistema , Hidrogênio/química , Microbiologia do Solo , Árvores , Carbono , Dióxido de Carbono , Florestas , Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...