Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 60(8): 752-758, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31102418

RESUMO

The tumor suppressor p53, encoded by TP53, is known as the "guardian of the genome." Sulfotransferases (SULTs) are involved in the metabolism of alkylated polycyclic aromatic hydrocarbons such as 1-hydroxymethylpyrene (1-HMP), which is a known substrate for SULT1A1. To investigate the impact of TP53 on the metabolic activation of 1-HMP, a panel of isogenic human colorectal HCT116 cells having TP53(+/+), TP53(+/-), or TP53(-/-) were treated with 10 µM 1-HMP for 24 hr. 1-HMP-DNA adduct formation was determined by ultraperformance liquid chromatography-tandem mass spectrometry analysis, which quantified two nucleoside adducts N2 -(1-methylpyrenyl)-2'-deoxyguanosine and N6 -(1-methylpyrenyl)-2'-deoxyadenosine. 1-HMP treatment resulted in significantly (~40-fold) higher DNA adduct levels in TP53(+/+) cells than in the other cell lines. Higher levels of 1-HMP-induced DNA adducts in TP53(+/+) cells correlated with higher basal expression of SULT1A1/3 in this cell line, but 1-HMP treatment showed no effect on the expression of this protein. These results indicate that the cellular TP53 status is linked to the SULT1A1/3-mediated bioactivation of 1-HMP, thereby broadening the spectrum of p53's targets. Environ. Mol. Mutagen., 60:752-758, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Arilsulfotransferase/metabolismo , Adutos de DNA/efeitos dos fármacos , Pirenos/metabolismo , Sulfotransferases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Adutos de DNA/genética , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/genética
2.
Mutagenesis ; 33(4): 311-321, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30215795

RESUMO

The tumour suppressor p53, encoded by TP53, is a key player in a wide network of signalling pathways. We investigated its role in the bioactivation of the environmental carcinogen 3-nitrobenzanthrone (3-NBA)found in diesel exhaust and its metabolites 3-aminobenzanthrone (3-ABA) and N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) in a panel of isogenic human colorectal HCT116 cells differing only with respect to their TP53 status [i.e. TP53(+/+), TP53(+/-), TP53(-/-), TP53(R248W/+) or TP53(R248W/-)]. As a measure of metabolic competence, DNA adduct formation was determined using 32P-postlabelling. Wild-type (WT) p53 did not affect the bioactivation of 3-NBA; no difference in DNA adduct formation was observed in TP53(+/+), TP53(+/-) and TP53(-/-) cells. Bioactivation of both metabolites 3-ABA and N-OH-3-ABA on the other hand was WT-TP53 dependent. Lower 3-ABA- and N-OH-3-ABA-DNA adduct levels were found in TP53(+/-) and TP53(-/-) cells compared to TP53(+/+) cells, and p53's impact was attributed to differences in cytochrome P450 (CYP) 1A1 expression for 3-ABA whereas for N-OH-3-ABA, an impact of this tumour suppressor on sulphotransferase (SULT) 1A1/3 expression was detected. Mutant R248W-p53 protein function was similar to or exceeded the ability of WT-p53 in activating 3-NBA and its metabolites, measured as DNA adducts. However, identification of the xenobiotic-metabolising enzyme(s) (XMEs), through which mutant-p53 regulates these responses, proved difficult to decipher. For example, although both mutant cell lines exhibited higher CYP1A1 induction after 3-NBA treatment compared to TP53(+/+) cells, 3-NBA-derived DNA adduct levels were only higher in TP53(R248W/-) cells but not in TP53(R248W/+) cells. Our results show that p53's influence on carcinogen activation depends on the agent studied and thereby on the XMEs that mediate the bioactivation of that particular compound. The phenomenon of p53 regulating CYP1A1 expression in human cells is consistent with other recent findings; however, this is the first study highlighting the impact of p53 on sulphotransferase-mediated (i.e. SULT1A1) carcinogen metabolism in human cells.


Assuntos
Ativação Metabólica/efeitos dos fármacos , Poluentes Atmosféricos/efeitos adversos , Benzo(a)Antracenos/efeitos adversos , Carcinógenos Ambientais/efeitos adversos , Proteína Supressora de Tumor p53/metabolismo , Poluição do Ar/efeitos adversos , Antracenos/efeitos adversos , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células HCT116 , Humanos , Inativação Metabólica/efeitos dos fármacos , Bases de Schiff/efeitos adversos , Emissões de Veículos/toxicidade
3.
Toxicology ; 398-399: 1-12, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471073

RESUMO

Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) can induce cytochrome P450 1A1 (CYP1A1) via a p53-dependent mechanism. The effect of different p53-activating chemotherapeutic drugs on CYP1A1 expression, and the resultant effect on BaP metabolism, was investigated in a panel of isogenic human colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/-) or TP53(-/-) were treated for up to 48 h with 60 µM cisplatin, 50 µM etoposide or 5 µM ellipticine, each of which caused high p53 induction at moderate cytotoxicity (60-80% cell viability). We found that etoposide and ellipticine induced CYP1A1 in TP53(+/+) cells but not in TP53(-/-) cells, demonstrating that the mechanism of CYP1A1 induction is p53-dependent; cisplatin had no such effect. Co-incubation experiments with the drugs and 2.5 µM BaP showed that: (i) etoposide increased CYP1A1 expression in TP53(+/+) cells, and to a lesser extent in TP53(-/-) cells, compared to cells treated with BaP alone; (ii) ellipticine decreased CYP1A1 expression in TP53(+/+) cells in BaP co-incubations; and (iii) cisplatin did not affect BaP-mediated CYP1A1 expression. Further, whereas cisplatin and etoposide had virtually no influence on CYP1A1-catalysed BaP metabolism, ellipticine treatment strongly inhibited BaP bioactivation. Our results indicate that the underlying mechanisms whereby etoposide and ellipticine regulate CYP1A1 expression must be different and may not be linked to p53 activation alone. These results could be relevant for smokers, who are exposed to increased levels of BaP, when prescribing chemotherapeutic drugs. Beside gene-environment interactions, more considerations should be given to potential drug-environment interactions during chemotherapy.


Assuntos
Benzo(a)pireno/farmacologia , Cisplatino/farmacologia , Neoplasias Colorretais/metabolismo , Citocromo P-450 CYP1A1/biossíntese , Elipticinas/farmacologia , Etoposídeo/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ativação Metabólica , Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Carcinógenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/biossíntese , Citocromo P-450 CYP3A/metabolismo , Adutos de DNA/metabolismo , Dano ao DNA , Elipticinas/farmacocinética , Indução Enzimática/efeitos dos fármacos , Genes p53 , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
4.
Arch Toxicol ; 90(2): 291-304, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25398514

RESUMO

The tumour suppressor gene TP53 is mutated in more than 50 % of human tumours, making it one of the most important cancer genes. We have investigated the role of TP53 in cytochrome P450 (CYP)-mediated metabolic activation of three polycyclic aromatic hydrocarbons (PAHs) in a panel of isogenic colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/-), TP53(-/-), TP53(R248W/+) or TP53(R248W/-) were treated with benzo[a]pyrene (BaP), dibenz[a,h]anthracene and dibenzo[a,l]pyrene, and the formation of DNA adducts was measured by (32)P-postlabelling analysis. Each PAH formed significantly higher DNA adduct levels in TP53(+/+) cells than in the other cell lines. There were also significantly lower levels of PAH metabolites in the culture media of these other cell lines. Bypass of the need for metabolic activation by treating cells with the corresponding reactive PAH-diol-epoxide metabolites resulted in similar adduct levels in all cell lines, which confirms that the influence of p53 is on the metabolism of the parent PAHs. Western blotting showed that CYP1A1 protein expression was induced to much greater extent in TP53(+/+) cells than in the other cell lines. CYP1A1 is inducible via the aryl hydrocarbon receptor (AHR), but we did not find that expression of AHR was dependent on p53; rather, we found that BaP-induced CYP1A1 expression was regulated through p53 binding to a p53 response element in the CYP1A1 promoter region, thereby enhancing its transcription. This study demonstrates a new pathway for CYP1A1 induction by environmental PAHs and reveals an emerging role for p53 in xenobiotic metabolism.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Indutores das Enzimas do Citocromo P-450/farmacologia , Indutores das Enzimas do Citocromo P-450/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Indutores das Enzimas do Citocromo P-450/intoxicação , Adutos de DNA , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Células HCT116/efeitos dos fármacos , Humanos , Inativação Metabólica , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Receptores de Hidrocarboneto Arílico/metabolismo , Testes de Toxicidade , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...