Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 32(1-2): 113-127, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32741228

RESUMO

Hematopoietic stem and progenitor cell (HSPC)-based ex vivo gene therapy has demonstrated clinical success for X-linked severe combined immunodeficiency (SCID-X1) patients who lack a suitable donor for HSPC transplantation. Nevertheless, this form of treatment is associated with an increased risk of infectious disease complications and genotoxicity mainly due to the conditioning regimen. In addition, ex vivo gene therapy approaches require sophisticated facilities to manufacture gene-modified cells and to care for the patients after chemotherapy. Considering these impediments, we have developed an in vivo gene therapy approach to treat canine SCID-X1 after HSPC mobilization and systemic delivery of the therapeutic vector. Here, we investigated the use of the cocal envelope to pseudotype a lentiviral (LV) vector expressing a functional gammaC gene. The cocal envelope is resistant to serum inactivation compared with the commonly used vesicular stomatitis virus envelope glycoprotein (VSV-G) envelope and thus well suited for systemic delivery. Two SCID-X1 neonatal canines treated with this approach achieved long-term therapeutic immune reconstitution with no prior conditioning. Therapeutic levels of gene-corrected CD3+ T cells were demonstrated for at least 16 months, and all other correlates of T cell functionality were within normal range. Retroviral integration-site analysis demonstrated polyclonal T cell reconstitution. Comparative analysis of integration profiles of foamy viral (FV) vector and cocal LV vector after in vivo gene therapy found distinct integration-site patterns. These data demonstrate that clinically relevant and durable correction of canine SCID-X1 can be achieved with in vivo delivery of cocal LV. Since manufacturing of cocal LV is similar to VSV-G LV, this approach is easily translatable to a clinical setting, thus providing for a highly portable and accessible gene therapy platform for SCID-X1.


Assuntos
Spumavirus , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Animais , Cães , Terapia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas , Humanos , Lentivirus/genética , Transdução Genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia
2.
J Biol Chem ; 295(32): 11002-11020, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32518166

RESUMO

Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2-/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2-/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1-/-/Mfrn2-/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Proliferação de Células/fisiologia , Regeneração Hepática/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Animais , Homeostase , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo
3.
Exp Hematol ; 86: 28-42.e3, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32473295

RESUMO

As important vectors for ectopic protein expression, gene silencing, and progenitor cell barcoding, lentiviruses continue to emerge as versatile research and clinical tools. For studies employing cell types that are relatively resistant to transduction, high-titer lentivirus preparations with low cytotoxicity are required. During lentivirus production, carryover plasmid DNA endotoxins, transfection reagents, damaged packaging cells, and virus concentration procedures are potential sources of cytotoxicity. As an often unevaluated property of lentivirus preparations, cytotoxicity can unwittingly skew estimates of functional titers and complicate interpretations of transduced cell phenotypes. By employing hematopoietic UT7epo cells cultured in erythropoietin (EPO) below maximal dosing, we first define a sensitive flow cytometric bioassay for critically assessing the cytotoxicity (and titers) of lentivirus preparations. Bioassay of custom preparations of research-grade lentiviruses from six commercial sources unexpectedly revealed substantial cytotoxicity (with certain preparations additionally registering titers several log below designated values). To overcome such limiting properties, we further report on unique, efficient workflows for reproducibly preparing and processing high-titer, low-cytotoxicity (HTLC) lentiviruses at research scale. These HTLC lentiviruses reliably transduce peripheral blood hematopoietic stem/progenitor cells (PB-HSPCs) at frequencies ≥40%, with low cytotoxicity. In addition, by employing cyclosporin H (to inhibit IFITM3), PB-HSPCs can be transduced at heightened efficiency with nominal cytotoxicity. Overall, this work provides straightforward approaches to (1) critical assessment of the cytotoxicity of lentivirus preparations; (2) reproducible generation (and concentration) of high-quality lentiviruses via a streamlined workflow; and (3) transduction of PB-HSPCs at benchmark levels with nominal cytotoxicity.


Assuntos
Eritropoetina , Vetores Genéticos , Mobilização de Células-Tronco Hematopoéticas , Lentivirus , Células-Tronco de Sangue Periférico/metabolismo , Transdução Genética , Linhagem Celular , Eritropoetina/biossíntese , Eritropoetina/genética , Humanos , Células-Tronco de Sangue Periférico/citologia
4.
Nat Commun ; 11(1): 219, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924795

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Imunoterapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Seleção Clonal Mediada por Antígeno/imunologia , Humanos , Cinética , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Sequência de RNA , Linfócitos T Citotóxicos/imunologia , Transcriptoma
5.
Stem Cell Reports ; 13(1): 91-104, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31204301

RESUMO

Myeloid-differentiated hematopoietic stem cells (HSCs) have contributed to a number of novel treatment approaches for lysosomal storage diseases of the central nervous system (CNS), and may also be applied to patients infected with HIV. We quantified hematopoietic stem and progenitor cell (HSPC) trafficking to 20 tissues including lymph nodes, spleen, liver, gastrointestinal tract, CNS, and reproductive tissues. We observed efficient marking of multiple macrophage subsets, including CNS-associated myeloid cells, suggesting that HSPC-derived macrophages are a viable approach to target gene-modified cells to tissues. Gene-marked cells in the CNS were unique from gene-marked cells at any other physiological sites including peripheral blood. This novel finding suggests that these cells were derived from HSPCs, migrated to the brain, were compartmentalized, established myeloid progeny, and could be targeted for lifelong delivery of therapeutic molecules. Our findings have highly relevant implications for the development of novel therapies for genetic and infectious diseases of the CNS.


Assuntos
Sistema Nervoso Central/citologia , Transplante de Células-Tronco Hematopoéticas , Células Mieloides/citologia , Animais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Células-Tronco Hematopoéticas , Estudos Longitudinais , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/terapia , Macaca nemestrina , Macrófagos/citologia
6.
Nat Nanotechnol ; 12(8): 813-820, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28416815

RESUMO

An emerging approach for treating cancer involves programming patient-derived T cells with genes encoding disease-specific chimeric antigen receptors (CARs), so that they can combat tumour cells once they are reinfused. Although trials of this therapy have produced impressive results, the in vitro methods they require to generate large numbers of tumour-specific T cells are too elaborate for widespread application to treat cancer patients. Here, we describe a method to quickly program circulating T cells with tumour-recognizing capabilities, thus avoiding these complications. Specifically, we demonstrate that DNA-carrying nanoparticles can efficiently introduce leukaemia-targeting CAR genes into T-cell nuclei, thereby bringing about long-term disease remission. These polymer nanoparticles are easy to manufacture in a stable form, which simplifies storage and reduces cost. Our technology may therefore provide a practical, broadly applicable treatment that can generate anti-tumour immunity 'on demand' for oncologists in a variety of settings.


Assuntos
DNA/química , Portadores de Fármacos , Técnicas de Transferência de Genes , Imunidade Celular/efeitos dos fármacos , Leucemia/terapia , Nanopartículas/química , Receptores de Antígenos Quiméricos , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Imunidade Celular/genética , Leucemia/genética , Leucemia/imunologia , Leucemia/patologia , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
7.
Mol Ther ; 24(7): 1237-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27058824

RESUMO

Lentiviral vectors (LVs) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G) have demonstrated great promise in gene therapy trials employing hematopoietic stem cell and T-cells. The VSV-G envelope confers broad tropism and stability to the vector but is toxic when constitutively expressed, which has impeded efforts to generate stable producer cell lines. We previously showed that cocal pseudotyped LVs offer an excellent alternative to VSV-G vectors because of their broad tropism and resistance to human serum inactivation. In this study, we demonstrate that cocal LVs transduce CD34(+) and CD4(+) T-cells more efficiently than VSV-G LVs and share the same receptor(s) for cell entry. 293T-cells stably expressing the cocal envelope produced significantly higher LV titers than VSV-G expressing cells. We developed cocal pseudotyped, third-generation, self-inactivating LV producer cell lines for a GFP reporter and for a WT1 tumor-specific T-cell receptor, which achieved concentrated titers above 10(8) IU/ml and were successfully adapted for growth in suspension, serum-free culture. The resulting LVs were at least as effective as standard LVs in transducing CD34(+) and CD4(+) T-cells. Our stable cocal LV producer cell lines should facilitate the production of large-scale, high titer clinical grade vectors.


Assuntos
Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Glicoproteínas de Membrana/genética , Linfócitos T/metabolismo , Transdução Genética , Técnicas de Cultura de Células , Expressão Gênica , Genes Reporter , Engenharia Genética , Células HEK293 , Humanos , Lentivirus/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de LDL/metabolismo , Receptores Virais/metabolismo , Transgenes , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas do Envelope Viral/genética
8.
Blood ; 123(23): 3578-84, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24642749

RESUMO

Current approaches to hematopoietic stem cell (HSC) gene therapy involve the collection and ex vivo manipulation of HSCs, a process associated with loss of stem cell multipotency and engraftment potential. An alternative approach for correcting blood-related diseases is the direct intravenous administration of viral vectors, so-called in vivo gene therapy. In this study, we evaluated the safety and efficacy of in vivo gene therapy using a foamy virus vector for the correction of canine X-linked severe combined immunodeficiency (SCID-X1). In newborn SCID-X1 dogs, injection of a foamy virus vector expressing the human IL2RG gene resulted in an expansion of lymphocytes expressing the common γ chain and the development of CD3(+) T lymphocytes. CD3(+) cells expressed CD4 and CD8 coreceptors, underwent antigen receptor gene rearrangement, and demonstrated functional maturity in response to T-cell mitogens. Retroviral integration site analysis in 4 animals revealed a polyclonal pattern of integration in all dogs with evidence for dominant clones. These results demonstrate that a foamy virus vector can be administered with therapeutic benefit in the SCID-X1 dog, a clinically relevant preclinical model for in vivo gene therapy.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Spumavirus , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Animais , Células Sanguíneas/metabolismo , Linhagem da Célula/genética , Modelos Animais de Doenças , Cães , Células HEK293 , Humanos , Injeções Intravenosas , Integração Viral/genética
9.
J Mol Med (Berl) ; 90(11): 1283-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22660274

RESUMO

A major hurdle for hematopoietic stem cell (HSC) gene therapy for inherited bone marrow disorders, including Fanconi anemia (FA), is adequate engraftment of gene-modified cells. A phenotypic defect in DNA repair renders FA patients sensitive to alkylating agents such as cyclophosphamide (Cy); however, at lower doses, Cy is well tolerated in the FA transplant setting. We tested whether non-alkylating agents could replace Cy for pretransplant conditioning to enhance engraftment of FANCA gene-modified hematopoietic cells. We compared Cy preconditioning with fludarabine (Flu) or cytarabine (AraC) or no conditioning as a control in fanca ( -/- ) mutant mice receiving gene-modified bone marrow cells. Only mice conditioned with Cy exhibited appreciable engraftment of gene-modified cells by PCR and resistance to mitomycin C (MMC). Cy administration following transplantation increased gene marking levels in all animals treated, but highest gene marking and corresponding MMC resistance were observed in mice receiving Cy pre- and posttransplantation. Importantly, no cytogenetic abnormalities were observed in Cy-treated mice. We conclude that Cy is an effective and superior preparative regimen with respect to engraftment of lentivirus-transduced cells and functional correction in fanca ( -/- ) mice. Thus, appropriately dosed Cy may provide a suitable conditioning regimen for FA patients undergoing HSC gene therapy.


Assuntos
Ciclofosfamida/farmacologia , Anemia de Fanconi/genética , Condicionamento Pré-Transplante/métodos , Animais , Células da Medula Óssea , Citogenética , Modelos Animais de Doenças , Anemia de Fanconi/terapia , Citometria de Fluxo/métodos , Terapia Genética/métodos , Células HEK293 , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lentivirus/genética , Metilcelulose/química , Camundongos , Camundongos Transgênicos , Mitomicina/farmacologia , Agonistas Mieloablativos/farmacologia , Reação em Cadeia da Polimerase/métodos
10.
Mol Ther ; 19(9): 1667-75, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21587213

RESUMO

The development of technology to generate induced pluripotent stem (iPS) cells constitutes one of the most exciting scientific breakthroughs because of the enormous potential for regenerative medicine. However, the safety of iPS cell-related products is a major concern for clinical translation. Insertional mutagenesis, possible oncogenic transformation of iPS cells or their derivatives, or the contamination of differentiated iPS cells with undifferentiated cells, resulting in the formation of teratomas, have remained considerable obstacles. Here, we demonstrate the utility of suicide genes to safeguard iPS cells and their derivatives. We found suicide genes can control the cell fate of iPS cells in vitro and in vivo without interfering with their pluripotency and self-renewal capacity. This study will be useful to evaluate the safety of iPS cell technology in a clinically highly relevant, large animal model and further benefit the clinical use of human iPS cells.


Assuntos
Genes Transgênicos Suicidas , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Teratoma/metabolismo , Animais , Southern Blotting , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Clonagem Molecular , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus/genética , Macaca/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Animais , Mutagênese Insercional , Medicina Regenerativa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
11.
Stem Cells Dev ; 20(5): 795-807, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21058905

RESUMO

Induced pluripotent stem (iPS) cells have great potential for regenerative medicine and gene therapy. Thus far, iPS cells have typically been generated using integrating viral vectors expressing various reprogramming transcription factors; nonintegrating methods have been less effective and efficient. Because there is a significant risk of malignant transformation and cancer involved with the use of iPS cells, careful evaluation of transplanted iPS cells will be necessary in small and large animal studies before clinical application. Here, we have generated and characterized nonhuman primate iPS cells with the goal of evaluating iPS cell transplantation in a clinically relevant large animal model. We developed stable Phoenix-RD114-based packaging cell lines that produce OCT4, SOX2, c-MYC, and KLF4 (OSCK) expressing gammaretroviral vectors. Using these vectors in combination with small molecules, we were able to efficiently and reproducibly generate nonhuman primate iPS cells from pigtailed macaques (Macaca nemestrina). The established nonhuman primate iPS cells exhibited pluripotency and extensive self-renewal capacity. The facile and reproducible generation of nonhuman primate iPS cells using defined producer cells as a source of individual reprogramming factors should provide an important resource to optimize and evaluate iPS cell technology for studies involving stem cell biology and regenerative medicine.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas , Macaca nemestrina/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Reprogramação Celular/genética , Feminino , Fibroblastos/citologia , Gammaretrovirus/genética , Gammaretrovirus/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Macaca nemestrina/metabolismo , Masculino , Camundongos , Análise em Microsséries , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Medicina Regenerativa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Risco , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transfecção
12.
Stem Cells Dev ; 18(6): 839-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18842099

RESUMO

Our understanding of the mechanisms by which intravenously transplanted hematopoietic stem/progenitor cells (HSPCs) home to and engraft the bone marrow (BM) remains incomplete, but participation of adhesion molecules has been documented. We here demonstrate that blockade of the alpha6-integrin enhanced BM homing of human and nonhuman primate BM-derived HSPCs by >60% in the xenogeneic transplant model and led to significantly improved engraftment. The effect was limited to BM-derived HSPCs, as granulocyte-colony-stimulating factor mobilized peripheral blood or cord blood HSPCs express little or no alpha6 integrin. By contrast, despite high alpha6 integrin expression, no effect of alpha6 blockade on murine BM-HSPCs homing/engraftment was observed.


Assuntos
Movimento Celular , Células-Tronco Hematopoéticas/citologia , Integrina alfa6/metabolismo , Papio/imunologia , Animais , Antígenos CD34/metabolismo , Ensaio de Unidades Formadoras de Colônias , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos
13.
Blood ; 111(12): 5537-43, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18388180

RESUMO

Lentiviral vectors are attractive for hematopoietic stem cell (HSC) gene therapy because they do not require mitosis for nuclear entry, they efficiently transduce hematopoietic repopulating cells, and self-inactivating (SIN) designs can be produced at high titer. Experiments to evaluate HIV-derived lentiviral vectors in nonhuman primates prior to clinical trials have been hampered by low transduction frequencies due in part to host restriction by TRIM5alpha. We have established conditions for efficient transduction of pigtailed macaque (Macaca nemestrina) long-term repopulating cells using VSV-G-pseudotyped HIV-based lentiviral vectors. Stable, long-term, high-level gene marking was observed in 3 macaques using relatively low MOIs (5-10) in a 48-hour ex vivo transduction protocol. All animals studied had rapid neutrophil engraftment with a median of 10.3 days to a count greater than 0.5 x 10(9)/L (500/microL). Expression was detected in all lineages, with long-term marking levels in granulocytes at approximately 20% to 30%, and in lymphocytes at approximately 12% to 23%. All animals had polyclonal engraftment as determined by analysis of vector integration sites. These data suggest that lentiviral vectors should be highly effective for HSC gene therapy, particularly for diseases in which maintaining the engraftment potential of stem cells using short-term ex vivo transduction protocols is critical.


Assuntos
Vetores Genéticos , HIV-1/genética , Células-Tronco Hematopoéticas/fisiologia , Lentivirus/genética , Transdução Genética/métodos , Animais , Antígenos CD34/metabolismo , Linhagem da Célula/fisiologia , Expressão Gênica , Terapia Genética/métodos , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Técnicas In Vitro , Macaca nemestrina , Transgenes/genética
14.
Exp Hematol ; 36(7): 823-31, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18394775

RESUMO

OBJECTIVE: Inducible and transient expression of transcription factors, growth factors, or mitogenic factors can be used to influence proliferation or differentiation of hematopoietic progenitor/stem cells (HSC). Furthermore, transient expression of proteins with site-specific endonuclease activity, potentially, can support targeted integration of exogenous transgenes into specific sites in the genome, a task that is currently a focus in development of gene therapy vectors. MATERIALS AND METHODS: We constructed a set of helper-dependent adenovirus (Ad) vectors with serotype 35 fiber knob domains (HD-Ad5/35), which can efficiently transduce human CD34(+) cells, particularly subsets with potential stem cell capacity. These vectors contain Tet-inducible expression systems that were shielded by insulators and transcription stop signals to minimize unspecific interference by transcriptional elements present in viral and stuffer DNA. We compared two vectors, containing a fusion between the Krüppel-associated box (KRAB) domain and the tetracycline repressor (HD-Ad5/35.Tet-1) or an autoregulated rtTA (HD-Ad5/35.Tet-2) for regulated transgene expression in Mo7e cells, a model for HSC, and primary human CD34(+) cells. RESULTS: HD-Ad5/35.Tet-1 conferred lower background expression than HD-Ad5/35.Tet-2, although levels of induced gene expression were higher for HD-Ad5/35.Tet-2. In CD34(+) cells, while HD-Ad5/35.Tet-1 allowed for activated gene expression in all transduced cells, induced gene expression from HD-Ad5/35.Tet-2 was restricted to a small subset of CD34(+) cells. Importantly, clonogeneic assays and repopulation studies in nonobese diabetic/severe combined immunodeficient mice showed that both HD-Ad5/35.Tet-1 and -2 vectors mediated induced gene expression in primitive hematopoietic cells. These studies also confirmed that transduction of CD34(+) cells with HD-Ad5/35 vectors is not associated with cytotoxicity, a problem observed with first-generation Ad5/35 vectors. CONCLUSIONS: Both HD-Ad5/35 vector expression systems confer tightly regulated, transient transgene expression in human HSC.


Assuntos
Adenoviridae , Regulação da Expressão Gênica , Terapia Genética , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Transdução Genética , Antígenos CD34/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Transgenes/fisiologia
15.
Cancer Res ; 67(18): 8783-90, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17875719

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, and patients rarely survive for more than 2 years. Gene therapy may offer new treatment options and improve the prognosis for patients with GBM. Adenovirus-mediated gene therapy strategies for brain tumors have been limited by inefficient gene transfer due to low expression of the adenovirus serotype 5 (Ad5) receptor. We have used an adenovirus vector that specifically replicates in tumor cells and uses an Ad5 capsid and the adenovirus serotype (Ad35) fiber for efficient infection of malignant tumor cells. This vector also expresses adenovirus E1A and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a tumor-specific manner. Here, we show that this oncolytic vector (Ad5/Ad35.IR-E1A/TRAIL) efficiently infects the GBM tumor cell lines SF767, T98G, and U-87 MG. Tumor cell killing was markedly enhanced with Ad5/Ad35.IR-E1A/TRAIL compared with wild-type Ad5 and Ad35 virus or Ad5/Ad35.IR-E1A- vectors without TRAIL expression in vitro. In vivo experiments using s.c. xenografted U-87 MG cells in NOD/SCID mice showed a significant growth delay of tumors after i.t. injection of Ad5/Ad35.IR-E1A/TRAIL, whereas adenovirus wild-type injections showed only marginal or no effect. Our findings indicate that the use of a capsid-modified adenoviral vector, in combination with TRAIL expression, is a promising novel approach for gene therapy of glioblastoma.


Assuntos
Adenoviridae/fisiologia , Capsídeo/metabolismo , Glioblastoma/terapia , Glioblastoma/virologia , Terapia Viral Oncolítica/métodos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/patogenicidade , Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/patologia , Infecções por Adenoviridae/virologia , Proteínas E1A de Adenovirus/genética , Animais , Apoptose/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Terapia Genética/métodos , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteína Cofatora de Membrana/biossíntese , Proteína Cofatora de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores Virais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...