Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1830, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758186

RESUMO

Aminoglycoside antibiotics target the ribosome and induce mistranslation, yet which translation errors induce bacterial cell death is unclear. The analysis of cellular proteins by quantitative mass spectrometry shows that bactericidal aminoglycosides induce not only single translation errors, but also clusters of errors in full-length proteins in vivo with as many as four amino acid substitutions in a row. The downstream errors in a cluster are up to 10,000-fold more frequent than the first error and independent of the intracellular aminoglycoside concentration. The prevalence, length, and composition of error clusters depends not only on the misreading propensity of a given aminoglycoside, but also on its ability to inhibit ribosome translocation along the mRNA. Error clusters constitute a distinct class of misreading events in vivo that may provide the predominant source of proteotoxic stress at low aminoglycoside concentration, which is particularly important for the autocatalytic uptake of the drugs.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/genética , Proteoma/genética , Ribossomos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometria de Massas , Mutação de Sentido Incorreto , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Fator Tu de Elongação de Peptídeos/genética , Peptídeos/genética , Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica , Proteínas Recombinantes , Ribossomos/efeitos dos fármacos , Estreptomicina/farmacologia , Estresse Fisiológico/genética
2.
Nucleic Acids Res ; 48(3): 1056-1067, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31511883

RESUMO

During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, -1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.


Assuntos
Biossíntese de Proteínas , Códon de Terminação , Mudança da Fase de Leitura do Gene Ribossômico , Ribossomos/metabolismo
3.
Nucleic Acids Res ; 47(6): 2932-2945, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649420

RESUMO

Assessment of the fidelity of gene expression is crucial to understand cell homeostasis. Here we present a highly sensitive method for the systematic Quantification of Rare Amino acid Substitutions (QRAS) using absolute quantification by targeted mass spectrometry after chromatographic enrichment of peptides with missense amino acid substitutions. By analyzing incorporation of near- and non-cognate amino acids in a model protein EF-Tu, we show that most of missense errors are too rare to detect by conventional methods, such as DDA, and are estimated to be between <10-7-10-5 by QRAS. We also observe error hotspots of up to 10-3 for some types of mismatches, including the G-U mismatch. The error frequency depends on the expression level of EF-Tu and, surprisingly, the amino acid position in the protein. QRAS is not restricted to any particular miscoding event, organism, strain or model protein and is a reliable tool to analyze very rare proteogenomic events.


Assuntos
Proteínas de Escherichia coli/genética , Expressão Gênica/genética , Mutação de Sentido Incorreto/genética , Fator Tu de Elongação de Peptídeos/genética , Aminoácidos , Escherichia coli/genética , Homeostase/genética
4.
Elife ; 72018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29889659

RESUMO

Release factors RF1 and RF2 promote hydrolysis of peptidyl-tRNA during translation termination. The GTPase RF3 promotes recycling of RF1 and RF2. Using single molecule FRET and biochemical assays, we show that ribosome termination complexes that carry two factors, RF1-RF3 or RF2-RF3, are dynamic and fluctuate between non-rotated and rotated states, whereas each factor alone has its distinct signature on ribosome dynamics and conformation. Dissociation of RF1 depends on peptide release and the presence of RF3, whereas RF2 can dissociate spontaneously. RF3 binds in the GTP-bound state and can rapidly dissociate without GTP hydrolysis from termination complex carrying RF1. In the absence of RF1, RF3 is stalled on ribosomes if GTP hydrolysis is blocked. Our data suggest how the assembly of the ribosome-RF1-RF3-GTP complex, peptide release, and ribosome fluctuations promote termination of protein synthesis and recycling of the release factors.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Aminoacil-RNA de Transferência/genética , Ribossomos/genética , Carbocianinas/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Imagem Individual de Molécula , Termodinâmica
5.
Mol Cell ; 68(3): 515-527.e6, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100052

RESUMO

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/ultraestrutura , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Relação Estrutura-Atividade , Fator de Iniciação de Tradução Eucariótico 5A
6.
Mol Cell ; 66(4): 558-567.e4, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525745

RESUMO

Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that -1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for -1-frame decoding. When the -1-frame aminoacyl-tRNA is lacking, the ribosomes switch into -2 frame. Quantitative mass spectrometry shows that the -2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.


Assuntos
Proteínas de Bactérias/biossíntese , DNA Polimerase III/biossíntese , Escherichia coli/enzimologia , Mudança da Fase de Leitura do Gene Ribossômico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cinética , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
7.
Nat Commun ; 7: 11657, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216360

RESUMO

The ribosome stalls on translation of polyproline sequences due to inefficient peptide bond formation between consecutive prolines. The translation factor EF-P is able to alleviate this stalling by accelerating Pro-Pro formation. However, the mechanism by which EF-P recognizes the stalled complexes and accelerates peptide bond formation is not known. Here, we use genetic code reprogramming through a flexible in-vitro translation (FIT) system to investigate how mutations in tRNA(Pro) affect EF-P function. We show that the 9-nt D-loop closed by the stable D-stem sequence in tRNA(Pro) is a crucial recognition determinant for EF-P. Such D-arm structures are shared only among the tRNA(Pro) isoacceptors and tRNA(fMet) in Escherichia coli, and the D-arm of tRNA(fMet) is essential for EF-P-induced acceleration of fMet-puromycin formation. Thus, the activity of EF-P is controlled by recognition elements in the tRNA D-arm.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Prolina/metabolismo , Sítios de Ligação/genética , Proteínas de Escherichia coli/genética , Mutação , Motivos de Nucleotídeos/genética , Fatores de Alongamento de Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/genética , Puromicina/química , Puromicina/metabolismo , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , Ribossomos/genética , Ribossomos/metabolismo
8.
RNA ; 21(12): 2047-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475831

RESUMO

The ribosome is the molecular machine responsible for protein synthesis in all living organisms. Its catalytic core, the peptidyl transferase center (PTC), is built of rRNA, although several proteins reach close to the inner rRNA shell. In the Escherichia coli ribosome, the flexible N-terminal tail of the ribosomal protein L27 contacts the A- and P-site tRNA. Based on computer simulations of the PTC and on previous biochemical evidence, the N-terminal α-amino group of L27 was suggested to take part in the peptidyl-transfer reaction. However, the contribution of this group to catalysis has not been tested experimentally. Here we investigate the role of L27 in peptide-bond formation using fast kinetics approaches. We show that the rate of peptide-bond formation at physiological pH, both with aminoacyl-tRNA or with the substrate analog puromycin, is independent of the presence of L27; furthermore, translation of natural mRNAs is only marginally affected in the absence of L27. The pH dependence of the puromycin reaction is unaltered in the absence of L27, indicating that the N-terminal α-amine is not the ionizing group taking part in catalysis. Likewise, L27 is not required for the peptidyl-tRNA hydrolysis during termination. Thus, apart from the known effect on subunit association, which most likely explains the phenotype of the deletion strains, L27 does not appear to be a key player in the core mechanism of peptide-bond formation on the ribosome.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas/química , Ribossomos/química , Proteínas e Peptídeos de Choque Frio/biossíntese , Proteínas e Peptídeos de Choque Frio/química , Escherichia coli , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Cinética , Proteínas Ribossômicas/fisiologia , Ribossomos/fisiologia
9.
J Am Chem Soc ; 137(40): 12997-3006, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26384033

RESUMO

The peptide bond formation with the amino acid proline (Pro) on the ribosome is slow, resulting in translational stalling when several Pro have to be incorporated into the peptide. Stalling at poly-Pro motifs is alleviated by the elongation factor P (EF-P). Here we investigate why Pro is a poor substrate and how EF-P catalyzes the reaction. Linear free energy relationships of the reaction on the ribosome and in solution using 12 different Pro analogues suggest that the positioning of Pro-tRNA in the peptidyl transferase center is the major determinant for the slow reaction. With any Pro analogue tested, EF-P decreases the activation energy of the reaction by an almost uniform value of 2.5 kcal/mol. The main source of catalysis is the favorable entropy change brought about by EF-P. Thus, EF-P acts by entropic steering of Pro-tRNA toward a catalytically productive orientation in the peptidyl transferase center of the ribosome.


Assuntos
Entropia , Fatores de Alongamento de Peptídeos/química , Prolina/química , Ribossomos/química , Domínio Catalítico
10.
Proteomics ; 15(5-6): 862-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25546807

RESUMO

A majority of cellular functions are carried out by macromolecular complexes. A host of biochemical and spectroscopic methods exists to characterize especially protein/protein complexes, however there has been a lack of a universal method to determine protein stoichiometries. Peptide-based MS, especially as a complementary method to the MS analysis of intact protein complexes, has now been developed to a point where it can be employed to assay protein stoichiometries in a routine manner. While the experimental demands are still significant, peptide-based MS has been successfully applied to analyze stoichiometries for a variety of protein complexes from very different biological backgrounds. In this review, we discuss the requirements especially for targeted MS acquisition strategies to be used in this context, with a special focus on the interconnected experimental aspects of sample preparation, protein digestion, and peptide stability. In addition, different strategies for the introduction of quantitative peptide standards and their suitability for different scenarios are compared.


Assuntos
Substâncias Macromoleculares , Espectrometria de Massas/métodos , Peptídeos , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/química , Peptídeos/análise , Peptídeos/química , Proteômica
11.
Nat Commun ; 4: 1387, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340427

RESUMO

The emergence of ribosomes and translation factors is central for understanding the origin of life. Recruitment of translation factors to bacterial ribosomes is mediated by the L12 stalk composed of protein L10 and several copies of protein L12, the only multi-copy protein of the ribosome. Here we predict stoichiometries of L12 stalk for >1,200 bacteria, mitochondria and chloroplasts by a computational analysis, and validate the predictions by quantitative mass spectrometry. The majority of bacteria have L12 stalks allowing for binding of four or six copies of L12, largely independent of the taxonomic group or living conditions of the bacteria, whereas some cyanobacteria have eight copies. Mitochondrial and chloroplast ribosomes can accommodate six copies of L12. The last universal common ancestor probably had six molecules of L12 molecules bound to L10. Changes of the stalk composition provide a unique possibility to trace the evolution of protein components of the ribosome.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/genética , Evolução Molecular , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Dosagem de Genes , Humanos , Espectrometria de Massas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Ribossômico 16S/genética , Proteína Ribossômica L10 , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Synechococcus/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
12.
Science ; 339(6115): 85-8, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23239624

RESUMO

Elongation factor P (EF-P) is a translation factor of unknown function that has been implicated in a great variety of cellular processes. Here, we show that EF-P prevents ribosome from stalling during synthesis of proteins containing consecutive prolines, such as PPG, PPP, or longer proline strings, in natural and engineered model proteins. EF-P promotes peptide-bond formation and stabilizes the peptidyl-transfer RNA in the catalytic center of the ribosome. EF-P is posttranslationally modified by a hydroxylated ß-lysine attached to a lysine residue. The modification enhances the catalytic proficiency of the factor mainly by increasing its affinity to the ribosome. We propose that EF-P and its eukaryotic homolog, eIF5A, are essential for the synthesis of a subset of proteins containing proline stretches in all cells.


Assuntos
Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Prolina/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Lisina/metabolismo , Dados de Sequência Molecular , Prolina/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional
13.
Philos Trans R Soc Lond B Biol Sci ; 366(1580): 2979-86, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21930591

RESUMO

Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity.


Assuntos
Evolução Molecular , Biossíntese de Proteínas , Ribossomos/genética , Proteínas de Bactérias/química , Domínio Catalítico , Códon/química , Ativação Enzimática , Escherichia coli/química , Escherichia coli/genética , GTP Fosfo-Hidrolases/química , Guanosina Trifosfato/química , Hidrólise , Cinética , Fator Tu de Elongação de Peptídeos/química , Peptídeos/química , Aminoacil-RNA de Transferência/química , Ribossomos/química , Fatores de Tempo
14.
EMBO J ; 29(21): 3701-9, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20842102

RESUMO

The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10⁻³, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in k(cat) values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.


Assuntos
Códon/genética , Guanosina Trifosfato/metabolismo , Elongação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico , Aminoacil-RNA de Transferência , Ribossomos/metabolismo , Escherichia coli , Cinética
15.
J Biol Chem ; 283(47): 32229-35, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18809677

RESUMO

The ribosome catalyzes peptide bond formation between peptidyl-tRNA in the P site and aminoacyl-tRNA in the A site. Here, we show that the nature of the C-terminal amino acid residue in the P-site peptidyl-tRNA strongly affects the rate of peptidyl transfer. Depending on the C-terminal amino acid of the peptidyl-tRNA, the rate of reaction with the small A-site substrate puromycin varied between 100 and 0.14 s(-1), regardless of the tRNA identity. The reactivity decreased in the order Lys = Arg > Ala > Ser > Phe = Val > Asp >> Pro, with Pro being by far the slowest. However, when Phe-tRNA(Phe) was used as A-site substrate, the rate of peptide bond formation with any peptidyl-tRNA was approximately 7 s(-1), which corresponds to the rate of binding of Phe-tRNA(Phe) to the A site (accommodation). Because accommodation is rate-limiting for peptide bond formation, the reaction rate is uniform for all peptidyl-tRNAs, regardless of the variations of the intrinsic chemical reactivities. On the other hand, the 50-fold increase in the reaction rate for peptidyl-tRNA ending with Pro suggests that full-length aminoacyl-tRNA in the A site greatly accelerates peptide bond formation.


Assuntos
RNA de Transferência/química , Aminoácidos/química , Catálise , Códon , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Conformação de Ácido Nucleico , Peptídeos/química , Prolina/química , Estrutura Terciária de Proteína , RNA Catalítico/química , Ribossomos/química , Especificidade por Substrato , Termodinâmica
16.
Chem Biol ; 15(5): 493-500, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18482701

RESUMO

The ribosome has an active site comprised of RNA that catalyzes peptide bond formation. To understand how RNA promotes this reaction requires a detailed understanding of the chemical transition state. Here, we report the Brønsted coefficient of the alpha-amino nucleophile with a series of puromycin derivatives. Both 50S subunit- and 70S ribosome-catalyzed reactions displayed linear free-energy relationships with slopes close to zero under conditions where chemistry is rate limiting. These results indicate that, at the transition state, the nucleophile is neutral in the ribosome-catalyzed reaction, in contrast to the substantial positive charge reported for typical uncatalyzed aminolysis reactions. This suggests that the ribosomal transition state involves deprotonation to a degree commensurate with nitrogen-carbon bond formation. Such a transition state is significantly different from that of uncatalyzed aminolysis reactions in solution.


Assuntos
Aminas/química , Proteínas Ribossômicas/química
17.
EMBO Rep ; 7(7): 699-703, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16799464

RESUMO

The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.


Assuntos
Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Técnicas In Vitro , Cinética , Peptídeos/química , Peptidil Transferases/metabolismo , Subunidades Proteicas , RNA de Transferência de Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...