Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 403(2): 243-249, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34699696

RESUMO

Thymic stromal lymphopoietin (TSLP) is a pro-inflammatory cytokine with important pathological roles in Asthma bronchiale, malignant tumours and other diseases. The heterodimeric human TSLP receptor (hTSLPR) consists of the TSLP-binding subunit (TSLPRα) and the IL-7Rα-subunit. We studied the properties of hTSLP variants with mutations in their bipartite interaction interface towards IL-7Rα. One mutant (T46D/K101D) showed only mild impairment in receptor affinity but a massive reduction in biological activity. To facilitate the future development of hTSLP mutants with drug properties, we have devised a eukaryontic cytokine display assay with activity read-out and intrinsic genotype-phenotype coupling.


Assuntos
Citocinas , Receptores de Citocinas , Citocinas/química , Humanos , Subunidade alfa de Receptor de Interleucina-7 , Domínios Proteicos , Receptores de Citocinas/genética , Linfopoietina do Estroma do Timo
2.
Int J Biol Macromol ; 190: 214-223, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481852

RESUMO

Antibody fragments are promising building blocks for developing targeted therapeutics, thus improving treatment efficacy while minimising off-target toxicity. Despite recent advances in targeted therapeutics, patients with Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), a high-risk malignancy, lack specific and effective targeted treatments. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in 50% of Ph-like ALL cases, conferring the survival of leukemia blasts through activation of the JAK/STAT signalling pathway. Targeting such a vital cell-surface protein could result in potent anti-leukaemic efficacy and reduce the likelihood of relapse associated with antigen loss. Herein, we developed a novel single-chain variable fragment (scFv) against CRLF2 based on a monoclonal antibody raised against the recombinant extracellular domain of human TSLPRα chain. The scFv fragment demonstrated excellent binding affinity with CRLF2 protein in the nanomolar range. Cellular association studies in vitro using an inducible CRLF2 knockdown cell line and ex vivo using patient-derived xenografts revealed the selective association of the scFv with CRLF2. The fragment exhibited significant receptor antagonistic effects on STAT5 signalling, suggesting possible therapeutic implications in vivo. This study is the first to describe the potential use of a novel scFv for targeting Ph-like ALL.


Assuntos
Fragmentos de Imunoglobulinas/metabolismo , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Citocinas/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular Tumoral , Criança , Endocitose , Células HEK293 , Humanos , Camundongos , Fosforilação , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Anticorpos de Cadeia Única/isolamento & purificação
3.
Cytokine ; 113: 228-237, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033138

RESUMO

Cytokines and growth factors are signaling proteins involved in communication processes between cells. They are involved in the control of numerous essential physiological processes such as cell proliferation, gene transcription and differentiation; therefore being in the focus of basic and applied research. Many of them are also of relevance for human diseases. When observed as potential targets for pharmacological intervention and objects of structure/function studies, it is important to measure their biological activities, optionally along with potential inhibitors, in a convenient and rational manner. Such tests are frequently laborious to set up and their establishment is complicated by the necessity to employ problematic cell types and sophisticated assays. Here we present a robust and modular activity assay system which can be adapted to virtually all ligands that signal through dimerization of membrane receptors from different families. The technique rests on fusing ligand-binding domains of specific receptors to the transmembrane and intracellular components of the thymic stromal lymphopoietin (TSLP) receptor which translates signals into readily quantifiable luciferase expression in reporter cells. We show that the activation of various hematopoietic cytokine receptors, of receptor tyrosine kinases as well as of receptors bearing serine/threonine kinase domains by their respective ligands was faithfully reflected both upon transient and stable introduction of hybrid receptor and reporter gene constructs into the murine pro-B cell line Ba/F3. Moreover, we demonstrate the suitability of this platform for the functional characterization of cytokine/growth factor receptor inhibitors.


Assuntos
Bioensaio , Citocinas/análise , Imunoglobulinas/metabolismo , Multimerização Proteica , Receptores de Citocinas/metabolismo , Animais , Células HEK293 , Humanos , Imunoglobulinas/genética , Camundongos , Receptores de Citocinas/genética
4.
Hum Mol Genet ; 25(13): 2838-2852, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170314

RESUMO

Small Kinetochore-Associated Protein (SKAP)/Kinastrin is a multifunctional protein with proposed roles in mitosis, apoptosis and cell migration. Exact mechanisms underlying its activities in these cellular processes are not completely understood. SKAP is predicted to have different isoforms, however, previous studies did not differentiate between them. Since distinct molecular architectures of protein isoforms often influence their localization and functions, this study aimed to examine the expression profile and functional differences between SKAP isoforms in human and mouse. Analyses of various human tissues and cells of different origin by RT-PCR, and by Western blotting and immunocytochemistry applying newly generated anti-SKAP monoclonal antibodies revealed that human SKAP exists in two protein isoforms: ubiquitously expressed SKAP16 and testis/sperm-specific SKAP1. In mouse, SKAP1 expression is detectable in testis at 4 weeks postnatally, when the first wave of spermatogenesis in mice is complete and the elongated spermatids are present in the testes. Furthermore, we identified Pontin as a new SKAP1 interaction partner. SKAP1 and Pontin co-localized in the flagellar region of human sperm suggesting a functional relevance for SKAP1-Pontin interaction in sperm motility. Since most previous studies on SKAP were performed with the testis-specific isoform SKAP1, our findings provide a new basis for future studies on the role of SKAP in both human somatic cells and male germ cells, including studies on male fertility.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Apoptose , Humanos , Masculino , Camundongos , Mitose , Especificidade de Órgãos/genética , Domínios Proteicos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Motilidade dos Espermatozoides , Espermatogênese , Espermatozoides/metabolismo , Testículo/metabolismo
5.
Leuk Res ; 40: 38-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26652578

RESUMO

PURPOSE: The cytokine thymic stromal lymphopoietin (TSLP) and its receptor TSLPR are involved in intercellular communication in the course of allergic inflammation and have recently been implicated in the development of various malignancies including B cell precursor acute lymphoblastic leukemia (BCP-ALL). We studied TSLPR expression, TSLP-induced signal transduction and its antibody-mediated inhibition in long-term cultures of primary cells derived from B-precursor ALL patients. METHODS: TSLPR expression was determined by flow cytometry and Western blot analysis, cell proliferation, signal transduction via the JAK/STAT pathway was analysed by Western blot detection of STAT tyrosine phosphorylation and by measuring TSLP-dependent activation of a STAT-specific reporter gene construct. For inhibition studies a recently introduced antagonistic antibody to the TSLPRα-subunit was used. RESULTS: TSLPR surface expression was observed in leukemic lymphoblasts from two out of ten patients with BCP-ALL. Upon TSLP stimulation, the cells with the highest TSLPR expression level showed enhanced proliferation and JAK/STAT-mediated gene regulation in a dose-dependent manner. By employment of an inhibitory antibody to the TSLPR, both TSLP-triggered cell proliferation and STAT transcription factor activation were specifically inhibited. CONCLUSIONS: These results suggest that blockade of the TSLPR might be a therapeutic option for a subset of BCP-ALL patients.


Assuntos
Proliferação de Células/fisiologia , Citocinas/fisiologia , Leucemia de Células B/patologia , Receptores de Citocinas/antagonistas & inibidores , Transdução de Sinais , Humanos , Leucemia de Células B/metabolismo , Linfopoietina do Estroma do Timo
6.
Cytokine ; 61(2): 546-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23199813

RESUMO

Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine with a pivotal role in development and maintenance of atopic diseases such as allergic asthma and atopic dermatitis. Moreover, recent studies show an involvement of TSLP in the progression of various cancers. TSLP signaling is mediated by the TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor. It consists of the IL-7 receptor alpha chain (IL-7Rα), which is shared with the IL-7 receptor, and the TSLPRα chain as a specific subunit. Blocking signal release by TSLP without affecting IL-7 function is a potentially interesting option for the treatment of atopic diseases or certain tumors. By employing the extracellular domain of human TSLPRα chain (hTSLPRα(ex)) as an antigen, we generated a set of monoclonal antibodies. Several binders to native and/or denatured receptor protein were identified and characterized by cytometry and Western blot analysis. A screen based on a STAT3-driven reporter gene assay in murine pro-B cells expressing a functional hTSLPR yielded two hybridoma clones with specific antagonistic properties towards hTSLP, but not IL-7. Kinetic studies measuring blockade of hTSLP-dependent STAT phosphorylation in a TSLP-responsive cell line revealed an inhibitory constant in the nanomolar range.


Assuntos
Anticorpos Bloqueadores/farmacologia , Receptores de Citocinas/antagonistas & inibidores , Receptores de Citocinas/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos , Receptores de Citocinas/sangue , Receptores de Citocinas/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade
7.
Biol Chem ; 391(2-3): 181-186, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20128689

RESUMO

Thymic stromal lymphopoietin (TSLP) is an interleukin-(IL)-7-like cytokine with emerging pathological importance for the development of atopic diseases such as allergic asthma bronchiale. The TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor, shares the IL-7R alpha-subunit with the IL-7 receptor system. The specific TSLPR alpha-chain shows similarities with the gammac receptor chain, but has some unusual features within the receptor family in both its ligand-binding and cytoplasmic domain. The murine TSLPR signals via the signal transducers and activators of transcription STAT5 and STAT3, but is unique among cytokine receptors in that it activates STATs without the involvement of Janus (JAK) tyrosine kinases, but instead utilizes the Src type kinase Tec. Here, we show by Western blotting and reporter gene experiments in combination with the application of a specific JAK inhibitor that the human TSLP receptor, in contrast, requires the function of JAK1 and JAK2 for STAT activation. Moreover, we demonstrate that the human TSLPR mediates gene regulation not only through STAT5 and STAT3 but has also the potential to mediate transcription via STAT1. Our work should help to understand more thoroughly how TSLP triggers inflammatory responses in the course of atopic diseases.


Assuntos
Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Receptores de Citocinas/metabolismo , Transdução de Sinais , Animais , Humanos , Janus Quinase 1/genética , Janus Quinase 2/genética , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Receptores de Citocinas/antagonistas & inibidores , Receptores de Citocinas/genética , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...