Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15587-15599, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757742

RESUMO

Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-ß fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.


Assuntos
Insulina , Agregados Proteicos , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Humanos , Insulina/metabolismo , Insulina/química , Agregados Proteicos/efeitos dos fármacos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Amiloide/química , Amiloide/metabolismo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124094, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503257

RESUMO

The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Substituição de Aminoácidos , Amiloide/química , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/química , Íons
3.
Sci Rep ; 13(1): 22268, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097650

RESUMO

Amyloid proteins are often associated with the onset of diseases, including Alzheimer's, Parkinson's and many others. However, there is a wide class of functional amyloids that are involved in physiological functions, e.g., formation of microbial biofilms or storage of hormones. Recent studies showed that an amyloid fibril could affect the aggregation of another protein, even from a different species. This may result in amplification or attenuation of the aggregation process. Insight into amyloid cross-interactions may be crucial for better understanding of amyloid diseases and the potential influence of microbial amyloids on human proteins. However, due to the demanding nature of the needed experiments, knowledge of such interactions is still limited. Here, we present PACT (Prediction of Amyloid Cross-interaction by Threading) - the computational method for the prediction of amyloid cross-interactions. The method is based on modeling of a heterogeneous fibril formed by two amyloidogenic peptides. The resulting structure is assessed by the structural statistical potential that approximates its plausibility and energetic stability. PACT was developed and first evaluated mostly on data collected in the AmyloGraph database of interacting amyloids and achieved high values of Area Under ROC (AUC=0.88) and F1 (0.82). Then, we applied our method to study the interactions of CsgA - a bacterial biofilm protein that was not used in our in-reference datasets, which is expressed in several bacterial species that inhabit the human intestines - with two human proteins. The study included alpha-synuclein, a human protein that is involved in Parkinson's disease, and human islet amyloid polypeptide (hIAPP), which is involved in type 2 diabetes. In both cases, PACT predicted the appearance of cross-interactions. Importantly, the method indicated specific regions of the proteins, which were shown to play a central role in both interactions. We experimentally confirmed the novel results of the indicated CsgA fragments interacting with hIAPP based on the kinetic characteristics obtained with the ThT assay. PACT opens the possibility of high-throughput studies of amyloid interactions. Importantly, it can work with fairly long protein fragments, and as a purely physicochemical approach, it relies very little on scarce training data. The tool is available as a web server at https://pact.e-science.pl/pact/ . The local version can be downloaded from https://github.com/KubaWojciechowski/PACT .


Assuntos
Amiloidose , Diabetes Mellitus Tipo 2 , Humanos , Amiloide/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Amiloidogênicas , Peptídeos/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo
4.
J Struct Biol ; 215(3): 108002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482232

RESUMO

Repetitivity and modularity of proteins are two related notions incorporated into multiple evolutionary concepts. We discuss whether they may also be essential for functional amyloids. Amyloids are proteins that create very regular and usually highly insoluble fibrils, which are often associated with neurodegeneration. However, recent discoveries showed that amyloid structure of a protein could also be beneficial and desired, e.g., to promote cell adhesion. Functional amyloids are proteins which differ in their characteristics from pathological amyloids, so that the fibril formation could be more under control of an organism. We propose that repeats in the sequence could regulate the aggregation propensity of these proteins. The inclusion of multiple symmetric interactions, due to the presence of the repeats, could be supporting and strengthening the desirable structural properties of functional amyloids. Our results show that tandem repeats in bacterial functional amyloids have a distinct characteristic. The pattern of repeats supports the appropriate level of fibril formation and better controllability of fibril stability. The repeats tend to be more imperfect, which attenuates excessive aggregation propensity. Their desired structure and function are also reinforced by their amino acid profile. Although in the study we focused on bacterial functional amyloids, due to their importance in biofilm formation, we propose that similar mechanisms could be employed in other functional amyloids which are designed by evolution to aggregate in a desirable manner, but not necessarily in pathological amyloids.


Assuntos
Amiloide , Proteínas de Bactérias , Proteínas de Bactérias/química , Amiloide/química , Sequência de Aminoácidos , Sequências Repetitivas de Aminoácidos , Agregados Proteicos , Biofilmes
5.
Nucleic Acids Res ; 51(D1): D352-D357, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36243982

RESUMO

Information about the impact of interactions between amyloid proteins on their fibrillization propensity is scattered among many experimental articles and presented in unstructured form. We manually curated information located in almost 200 publications (selected out of 562 initially considered), obtaining details of 883 experimentally studied interactions between 46 amyloid proteins or peptides. We also proposed a novel standardized terminology for the description of amyloid-amyloid interactions, which is included in our database, covering all currently known types of such a cross-talk, including inhibition of fibrillization, cross-seeding and other phenomena. The new approach allows for more specific studies on amyloids and their interactions, by providing very well-defined data. AmyloGraph, an online database presenting information on amyloid-amyloid interactions, is available at (http://AmyloGraph.com/). Its functionalities are also accessible as the R package (https://github.com/KotulskaLab/AmyloGraph). AmyloGraph is the only publicly available repository for experimentally determined amyloid-amyloid interactions.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Proteínas Amiloidogênicas/metabolismo , Peptídeos , Bases de Dados de Proteínas
6.
PLoS Comput Biol ; 18(12): e1010787, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542665

RESUMO

NLR proteins are intracellular receptors constituting a conserved component of the innate immune system of cellular organisms. In fungi, NLRs are characterized by high diversity of architectures and presence of amyloid signaling. Here, we explore the diverse world of effector and signaling domains of fungal NLRs using state-of-the-art bioinformatic methods including MMseqs2 for fast clustering, probabilistic context-free grammars for sequence analysis, and AlphaFold2 deep neural networks for structure prediction. In addition to substantially improving the overall annotation, especially in basidiomycetes, the study identifies novel domains and reveals the structural similarity of MLKL-related HeLo- and Goodbye-like domains forming the most abundant superfamily of fungal NLR effectors. Moreover, compared to previous studies, we found several times more amyloid motif instances, including novel families, and validated aggregating and prion-forming properties of the most abundant of them in vitro and in vivo. Also, through an extensive in silico search, the NLR-associated amyloid signaling was identified in basidiomycetes. The emerging picture highlights similarities and differences in the NLR architectures and amyloid signaling in ascomycetes, basidiomycetes and other branches of life.


Assuntos
Amiloide , Proteínas Fúngicas , Proteínas Fúngicas/metabolismo , Amiloide/química , Proteínas Amiloidogênicas , Proteínas NLR/metabolismo
7.
Elife ; 112022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259463

RESUMO

How the cuticles of the roughly 4.5 million species of ecdysozoan animals are constructed is not well understood. Here, we systematically mine gene expression datasets to uncover the spatiotemporal blueprint for how the chitin-based pharyngeal cuticle of the nematode Caenorhabditis elegans is built. We demonstrate that the blueprint correctly predicts expression patterns and functional relevance to cuticle development. We find that as larvae prepare to molt, catabolic enzymes are upregulated and the genes that encode chitin synthase, chitin cross-linkers, and homologs of amyloid regulators subsequently peak in expression. Forty-eight percent of the gene products secreted during the molt are predicted to be intrinsically disordered proteins (IDPs), many of which belong to four distinct families whose transcripts are expressed in overlapping waves. These include the IDPAs, IDPBs, and IDPCs, which are introduced for the first time here. All four families have sequence properties that drive phase separation and we demonstrate phase separation for one exemplar in vitro. This systematic analysis represents the first blueprint for cuticle construction and highlights the massive contribution that phase-separating materials make to the structure.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Muda , Proteínas , Larva/metabolismo , Quitina , Proteínas de Caenorhabditis elegans/metabolismo
8.
Methods Mol Biol ; 2340: 1-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167067

RESUMO

Several computational methods have been developed to predict amyloid propensity of a protein or peptide. These bioinformatics tools are time- and cost-saving alternatives to expensive and laborious experimental methods which are used to confirm self-aggregation of a protein. Computational approaches not only allow preselection of reliable candidates for amyloids but, most importantly, are capable of a thorough and informative analysis of a protein, indicating the sequence determinants of protein aggregation, identifying the potential causal mutations and likely mechanisms. Bioinformatics modeling applies several different approaches, which most typically include physicochemical or structure-based modeling, machine learning, or statistics based modeling. Bioinformatics methods typically use the amino acid sequence of a protein as an input, some also include additional information, for example, an available structure. This chapter describes the methods currently used to computationally predict amyloid propensity of a protein or peptide. Since the accuracy of bioinformatics methods may be highly dependent on reference data used to develop and evaluate the predictors, we also briefly present the main databases of amyloids used by the authors of bioinformatics tools.


Assuntos
Amiloide , Biologia Computacional , Sequência de Aminoácidos , Peptídeos , Agregados Proteicos
9.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066237

RESUMO

CsgA is an aggregating protein from bacterial biofilms, representing a class of functional amyloids. Its amyloid propensity is defined by five fragments (R1-R5) of the sequence, representing non-perfect repeats. Gate-keeper amino acid residues, specific to each fragment, define the fragment's propensity for self-aggregation and aggregating characteristics of the whole protein. We study the self-aggregation and secondary structures of the repeat fragments of Salmonella enterica and Escherichia coli and comparatively analyze their potential effects on these proteins in a bacterial biofilm. Using bioinformatics predictors, ATR-FTIR and FT-Raman spectroscopy techniques, circular dichroism, and transmission electron microscopy, we confirmed self-aggregation of R1, R3, R5 fragments, as previously reported for Escherichia coli, however, with different temporal characteristics for each species. We also observed aggregation propensities of R4 fragment of Salmonella enterica that is different than that of Escherichia coli. Our studies showed that amyloid structures of CsgA repeats are more easily formed and more durable in Salmonella enterica than those in Escherichia coli.


Assuntos
Amiloide/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Salmonella enterica/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Agregados Proteicos , Conformação Proteica , Salmonella enterica/genética , Salmonella enterica/crescimento & desenvolvimento , Homologia de Sequência
10.
Sci Rep ; 11(1): 8934, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903613

RESUMO

Several disorders are related to amyloid aggregation of proteins, for example Alzheimer's or Parkinson's diseases. Amyloid proteins form fibrils of aggregated beta structures. This is preceded by formation of oligomers-the most cytotoxic species. Determining amyloidogenicity is tedious and costly. The most reliable identification of amyloids is obtained with high resolution microscopies, such as electron microscopy or atomic force microscopy (AFM). More frequently, less expensive and faster methods are used, especially infrared (IR) spectroscopy or Thioflavin T staining. Different experimental methods are not always concurrent, especially when amyloid peptides do not readily form fibrils but oligomers. This may lead to peptide misclassification and mislabeling. Several bioinformatics methods have been proposed for in-silico identification of amyloids, many of them based on machine learning. The effectiveness of these methods heavily depends on accurate annotation of the reference training data obtained from in-vitro experiments. We study how robust are bioinformatics methods to weak supervision, encountering imperfect training data. AmyloGram and three other amyloid predictors were applied. The results proved that a certain degree of misannotation in the reference data can be eliminated by the bioinformatics tools, even if they belonged to their training set. The computational results are supported by new experiments with IR and AFM methods.


Assuntos
Amiloide , Biologia Computacional , Simulação por Computador , Peptídeos , Agregados Proteicos/genética , Amiloide/química , Amiloide/genética , Humanos , Microscopia de Força Atômica , Peptídeos/química , Peptídeos/genética , Espectrofotometria Infravermelho
11.
Sci Rep ; 10(1): 7721, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382058

RESUMO

Amyloids are protein aggregates observed in several diseases, for example in Alzheimer's and Parkinson's diseases. An aggregate has a very regular beta structure with a tightly packed core, which spontaneously assumes a steric zipper form. Experimental methods enable studying such peptides, however they are tedious and costly, therefore inappropriate for genomewide studies. Several bioinformatic methods have been proposed to evaluate protein propensity to form an amyloid. However, the knowledge of aggregate structures is usually not taken into account. We propose PATH (Prediction of Amyloidogenicity by THreading) - a novel structure-based method for predicting amyloidogenicity and show that involving available structures of amyloidogenic fragments enhances classification performance. Experimental aggregate structures were used in templatebased modeling to recognize the most stable representative structural class of a query peptide. Several machine learning methods were then applied on the structural models, using their energy terms. Finally, we identified the most important terms in classification of amyloidogenic peptides. The proposed method outperforms most of the currently available methods for predicting amyloidogenicity, with its area under ROC curve equal to 0.876. Furthermore, the method gave insight into significance of selected structural features and the potentially most stable structural class of a peptide fragment if subjected to crystallization.


Assuntos
Amiloide/ultraestrutura , Fragmentos de Peptídeos/ultraestrutura , Conformação Proteica em Folha beta/genética , Software , Algoritmos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/química , Biologia Computacional/métodos , Humanos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fragmentos de Peptídeos/química , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia
12.
Molecules ; 24(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527447

RESUMO

To successfully design and optimize the application of hydrogel matrices one has to effectively combine computational design tools with experimental methods. In this context, one of the most promising techniques is molecular modeling, which requires however accurate molecular models representing the investigated material. Although this method has been successfully used over the years for predicting the properties of polymers, its application to biopolymers, including gelatin, is limited. In this paper we provide a method for creating an atomistic representation of gelatin based on the modified FASTA codes of natural collagen. We show that the model created in this manner reproduces known experimental values of gelatin properties like density, glass-rubber transition temperature, WAXS profile and isobaric thermal expansion coefficient. We also present that molecular dynamics using the INTERFACE force field provides enough accuracy to track changes of density, fractional free volume and Hansen solubility coefficient over a narrow temperature regime (273-318 K) with 1 K accuracy. Thus we depict that using molecular dynamics one can predict properties of gelatin biopolymer as an efficient matrix for immobilization of various bioactive compounds, including enzymes.


Assuntos
Gelatina/química , Modelos Moleculares , Conformação Proteica , Algoritmos , Sequência de Aminoácidos , Análise de Variância , Biopolímeros/química , Hidrogéis/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...