Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38544105

RESUMO

This paper presents the description of the wavelength modulation spectroscopy (WMS) experiment, the parameters of which were established by use of the Artificial Intelligence (AI) algorithm. As a result, a significant improvement in the signal power to noise power ratio (SNR) was achieved, ranging from 1.6 to 6.5 times, depending on the harmonic. Typically, optimizing the operation conditions of WMS-based gas sensors is based on long-term simulations, complex mathematical model analysis, and iterative experimental trials. An innovative approach based on a biological-inspired genetic algorithm (GA) and custom-made electronics for laser control is proposed. The experimental setup was equipped with a 31.23 m Heriott multipass cell, software lock-in, and algorithms to control the modulation process of the quantum cascade laser (QCL) operating in the long-wavelength-infrared (LWIR) spectral range. The research results show that the applied evolutionary approach can efficiently and precisely explore a wide range of WMS parameter combinations, enabling researchers to dramatically reduce the time needed to identify optimal settings. It took only 300 s to test approximately 1.39 × 1032 combinations of parameters for key system components. Moreover, because the system is able to check all possible component settings, it is possible to unquestionably determine the operating conditions of WMS-based gas sensors for which the limit of detection (LOD) is the most favorable.

2.
Sensors (Basel) ; 23(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177656

RESUMO

The paper presents the long-term evolution and recent development of ultraviolet photodetectors. First, the general theory of ultraviolet (UV) photodetectors is briefly described. Then the different types of detectors are presented, starting with the older photoemission detectors through photomultipliers and image intensifiers. More attention is paid to silicon and different types of wide band gap semiconductor photodetectors such as AlGaN, SiC-based, and diamond detectors. Additionally, Ga2O3 is considered a promising material for solar-blind photodetectors due to its excellent electrical properties and a large bandgap energy. The last part of the paper deals with new UV photodetector concepts inspired by new device architectures based on low-dimensional solid materials. It is shown that the evolution of the architecture has shifted device performance toward higher sensitivity, higher frequency response, lower noise, and higher gain-bandwidth products.

3.
Sensors (Basel) ; 17(3)2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28273836

RESUMO

The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm-1) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure.

4.
Sci Rep ; 6: 39138, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974816

RESUMO

Broadband, mid-infrared supercontinuum generation in a step-index fluoroindate fibre is reported. By using ~70-picosecond laser pulses at 2.02 µm, provided by an optical parametric generator, a wide spectrum with a cut-off wavelength at 5.25 µm and a 5-dB bandwidth covering the entire 2-5 µm spectral interval has been demonstrated for the first time. The behaviour of the supercontinuum was investigated by changing the peak power and the wavelength of the pump pulses. This allowed the optimal pumping conditions to be determined for the nonlinear medium that was used. The optical damage threshold for the fluoroindate fibre was experimentally found to be ~200 GW/cm2.

5.
Pol Merkur Lekarski ; 39(231): 134-41, 2015 Sep.
Artigo em Polonês | MEDLINE | ID: mdl-26449573

RESUMO

UNLABELLED: Great interest of scientific community is observed recently over non-invasive tests methods dedicated to diagnose disease states using biomarkers. The ability to detect these substances in the human breath can provide valuable information about disorder of biochemical processes in the body. Breath analysis is non-invasive, painless and can provide a quick answer about the existence of the disease. In addition, the sampling process is carried out comfortably for both the patient and the medical staff. AIM: The aim of the study was to present opportunity of application the optoelectronic methods for screening tests in medical diagnostics. The results of the researches carried out at the Institute of Experimental Physics, Department of Physics UW and at the Institute of Optoelectronics MUT are presented. MATERIALS AND METHODS: For the detection of methane and ammonia in breath the Multipass Spectroscopic Absorption Cells (MUPASS ) were used. In the case of nitric oxide and ethane observation, Cavity Enhanced Absorption Spectroscopy (CEAS) was applied. During the investigation modern tunable and sophisticated infrared radiation sources were used: single mode diode lasers (for CH4, NH3 detection), quantum cascade laser (NO sensing), and optical parametric generator (PG711/DFG) for ethane measurements. The investigations of developed sensors were conducted with use of reference samples of biomarkers, which were prepared with gas standards generator 491M from KIN-TEK company. RESULTS: Experiments showed that sensitivities of the sensors are suitable for human breath analyzing. In case of methane sensor, the detection limit (sensitivity) of ~ 0.1 ppm was obtained. This value is significantly lower than the upper limit of methane concentration in the breath of healthy humans (10 ppm). Therefore, our system well satisfies the requirements for diseases screening (e.g. intestines diseases ) and for methane monitoring in healthy human breath. Ammonia sensor is characterized with linear response in the concentration range higher than 1 ppm. The upper limit of ammonia concentration in healthy human breath is approx. 2 ppm, so this system is well suited for the determination of disease states (e.g. liver diseases). During the observation of nitrogen oxide the detection limit of 30 ppb was obtained. According to the ATS recommendation such NO detection limit is sufficient to monitor people's health state and for the detection of respiratory diseases like asthma or chronic bronchitis. For ethane detection with a wavelength of 3.348 microns the detection limit of 20 ppb was obtained. CONCLUSIONS: Developed sensors are characterized by high sensitivity (ppb-level) and high selectivity, simple and fast measurement procedure. Therefore, they can be applied as medical screening tools enabling biomarkers detection in exhaled air at the molecular level.


Assuntos
Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Etano/análise , Óxido Nítrico/análise , Análise Espectral/instrumentação , Asma/diagnóstico , Biomarcadores/análise , Bronquite/diagnóstico , Doença Crônica , Humanos , Doenças Respiratórias/diagnóstico , Análise Espectral/métodos
6.
Sensors (Basel) ; 15(6): 14356-69, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26091398

RESUMO

The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Etano/análise , Óxido Nítrico/análise , Análise Espectral/métodos , Óxidos de Enxofre/análise , Humanos , Limite de Detecção
7.
Bioanalysis ; 5(18): 2287-306, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24053244

RESUMO

Breath is a rich mixture containing numerous volatile organic compounds at trace amounts (ppbv-pptv level) such as: hydrocarbons, alcohols, ketones, aldehydes, esters or heterocycles. The presence of some of them depends on health status. Therefore, breath analysis might be useful for clinical diagnostics, therapy monitoring and control of metabolic or biochemical cell cycle products. This Review presents an update on the latest developments in breath analysis applied to diagnosing different diseases with the help of high-quality equipment. Efforts were made to fully and accurately describe traditional and modern techniques used to determine the components of breath. The techniques were compared in terms of design, function and also detection limit of different volatile organic compounds. GC with different detectors, MS, optical sensor and laser spectroscopic detection techniques are also discussed.


Assuntos
Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise , Biomarcadores/análise , Cromatografia Gasosa/instrumentação , Humanos , Lasers , Espectrometria de Massas/instrumentação
8.
Sensors (Basel) ; 13(6): 7570-98, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23752566

RESUMO

This article presents design issues of high-sensitive laser absorption spectroscopy systems for nitrogen oxides (NO(x)) detection. Examples of our systems and their investigation results are also described. The constructed systems use one of the most sensitive methods, cavity enhanced absorption spectroscopy (CEAS). They operate at different wavelength ranges using a blue--violet laser diode (410 nm) as well as quantum cascade lasers (5.27 µm and 4.53 µm). Each of them is configured as a one or two channel measurement device using, e.g., time division multiplexing and averaging. During the testing procedure, the main performance features such as detection limits and measurements uncertainties have been determined. The obtained results are 1 ppb NO(2), 75 ppb NO and 45 ppb N(2)O. For all systems, the uncertainty of concentration measurements does not exceed a value of 13%. Some experiments with explosives are also discussed. A setup equipped with a concentrator of explosives vapours was used. The detection method is based either on the reaction of the sensors to the nitrogen oxides directly emitted by the explosives or on the reaction to the nitrogen oxides produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX and HMX a detection limit better than 1 ng has been achieved.


Assuntos
Óxidos de Nitrogênio/análise , Espectrofotometria , Algoritmos , Substâncias Explosivas/análise , Lasers Semicondutores , Óxido Nítrico/análise , Dióxido de Nitrogênio/análise , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...