Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cochrane Database Syst Rev ; (12): CD006281, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22161399

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells of the spinal cord, which leads to progressive muscle weakness. Children with SMA type I will never be able to sit without support and usually die by the age of two years. There are no known efficacious drug treatments that influence the course of the disease. This is an update of a review first published in 2009. OBJECTIVES: To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA type I, and to assess if such therapy can be given safely. Drug treatment for SMA types II and III is the topic of a separate updated Cochrane review. SEARCH METHODS: We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), CENTRAL (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to 8 March 2011). We searched the Clinical Trials Registry of the U.S. National Institute of Health (www.ClinicalTrials.gov) (8 March 2011) to identify additional trials that had not yet been published. SELECTION CRITERIA: We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA type I. Participants had to fulfil the clinical criteria and have a deletion or mutation of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis.The primary outcome measure was time from birth until death or full time ventilation. Secondary outcome measures were development of rolling, sitting or standing within one year after the onset of treatment, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS: Two authors (RW and AV) independently reviewed and extracted data from all potentially relevant trials. For included studies, pooled relative risks and standardised mean differences were to be calculated to assess treatment efficacy. MAIN RESULTS: One small randomised controlled study comparing riluzole treatment to placebo for 10 SMA type 1 children was identified and included in the original review. No further trials were identified for the update in 2011. Regarding the primary outcome measure, three of seven children treated with riluzole were still alive at the ages of 30, 48 and 64 months, whereas all three children in the placebo group died; but the difference was not statistically significant. Regarding the secondary outcome measures, none of the children in the riluzole or placebo group developed the ability to roll, sit or stand, and no adverse effects were observed. For several reasons the overall quality of the study was low, mainly because the study was too small to detect an effect and because of baseline differences. Follow-up of the 10 included children was complete. AUTHORS' CONCLUSIONS: No drug treatment for SMA type I has been proven to have significant efficacy.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Riluzol/uso terapêutico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Pré-Escolar , Humanos , Lactente , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Cochrane Database Syst Rev ; (12): CD006282, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22161400

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES: To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS: We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA: We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS: Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS: Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS: There is no proven efficacious drug treatment for SMA types II and III.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Acetilcarnitina/uso terapêutico , Adolescente , Aminas/uso terapêutico , Criança , Pré-Escolar , Creatina/uso terapêutico , Ácidos Cicloexanocarboxílicos/uso terapêutico , Gabapentina , Humanos , Hidroxiureia/uso terapêutico , Fenilbutiratos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Hormônio Liberador de Tireotropina/uso terapêutico , Ácido Valproico/uso terapêutico , Ácido gama-Aminobutírico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...