Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 128(3): 643-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17882268

RESUMO

N-acetyl-S-farnesyl-L-cysteine (AFC), a modulator of G protein and G-protein coupled receptor signaling, inhibits neutrophil chemotaxis and other inflammatory responses in cell-based assays. Here, we show topical AFC inhibits in vivo acute inflammation induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and arachidonic acid using the mouse ear model of inflammation. AFC inhibits edema, as measured by ear weight, and also inhibits neutrophil infiltration as assayed by direct counting in histological sections and by measuring myeloperoxidase (MPO) activity as a neutrophil marker. In addition, AFC inhibits in vivo allergic contact dermatitis in a mouse model utilizing sensitization followed by a subsequent challenge with 2,4-dinitrofluorobenzene. Unlike the established anti-inflammatories dexamethasone and indomethacin, AFC's action was restricted to the site of application. In this mouse model, both dexamethasone and indomethacin inhibited TPA-induced edema and MPO activity in the vehicle-treated, contralateral ear. AFC showed no contralateral ear inhibition for either of these end points. A marginally significant decrease due to AFC treatment was seen in TPA-induced epidermal hyperplasia at 24 hours. This was much less than the 90% inhibition of neutrophil infiltration, suggesting that AFC does not act by directly inhibiting protein kinase C.


Assuntos
Acetilcisteína/análogos & derivados , Anti-Inflamatórios/farmacologia , Dermatite/tratamento farmacológico , Dexametasona/farmacologia , Inibidores Enzimáticos/farmacologia , Acetilcisteína/farmacologia , Administração Tópica , Animais , Animais não Endogâmicos , Anti-Inflamatórios não Esteroides/farmacologia , Dermatite/imunologia , Modelos Animais de Doenças , Orelha Externa , Edema/prevenção & controle , Indometacina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Peroxidase/metabolismo
2.
Proc Natl Acad Sci U S A ; 103(39): 14313-8, 2006 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16973743

RESUMO

Escherichia coli chemotaxis is mediated by membrane receptor/histidine kinase signaling complexes. Fusing the cytoplasmic domain of the aspartate receptor, Tar, to a leucine zipper dimerization domain produces a hybrid, lzTar(C), that forms soluble complexes with CheA and CheW. The three-dimensional reconstruction of these complexes was different from that anticipated based solely on structures of the isolated components. We found that analogous complexes self-assembled with a monomeric cytoplasmic domain fragment of the serine receptor without the leucine zipper dimerization domain. These complexes have essentially the same size, composition, and architecture as those formed from lzTar(C). Thus, the organization of these receptor/signaling complexes is determined by conserved interactions between the constituent chemotaxis proteins and may represent the active form in vivo. To understand this structure in its cellular context, we propose a model involving parallel membrane segments in receptor-mediated CheA activation in vivo.


Assuntos
Quimiotaxia , Escherichia coli/metabolismo , Receptores de Aminoácido/química , Receptores de Aminoácido/metabolismo , Transdução de Sinais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Escherichia coli/química , Modelos Biológicos , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Receptores de Aminoácido/análise , Receptores de Aminoácido/ultraestrutura , Espalhamento de Radiação , Solubilidade
3.
Curr Opin Microbiol ; 9(2): 187-92, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16529985

RESUMO

Motile bacteria regulate chemotaxis through a highly conserved chemosensory signal-transduction system. System-wide analyses and mathematical modeling are facilitated by extensive experimental observations regarding bacterial chemotaxis proteins, including biochemical parameters, protein structures and protein-protein interaction maps. Thousands of signaling and regulatory chemotaxis proteins within a bacteria cell form a highly interconnected network through distinct protein-protein interactions. A bacterial cell is able to respond to multiple stimuli through a collection of chemoreceptors with different sensory modalities, which interact to affect the cooperativity and sensitivity of the chemotaxis response. The robustness or insensitivity of the chemotaxis system to perturbations in biochemical parameters is a product of the system's hierarchical network architecture.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Quimiotaxia , Transdução de Sinais , Adaptação Fisiológica , Fenômenos Fisiológicos Bacterianos , Receptores de Superfície Celular/metabolismo
4.
Bioessays ; 28(1): 9-22, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16369945

RESUMO

Motile bacteria respond to environmental cues to move to more favorable locations. The components of the chemotaxis signal transduction systems that mediate these responses are highly conserved among prokaryotes including both eubacterial and archael species. The best-studied system is that found in Escherichia coli. Attractant and repellant chemicals are sensed through their interactions with transmembrane chemoreceptor proteins that are localized in multimeric assemblies at one or both cell poles together with a histidine protein kinase, CheA, an SH3-like adaptor protein, CheW, and a phosphoprotein phosphatase, CheZ. These multimeric protein assemblies act to control the level of phosphorylation of a response regulator, CheY, which dictates flagellar motion. Bacterial chemotaxis is one of the most-understood signal transduction systems, and many biochemical and structural details of this system have been elucidated. This is an exciting field of study because the depth of knowledge now allows the detailed molecular mechanisms of transmembrane signaling and signal processing to be investigated.


Assuntos
Quimiotaxia , Escherichia coli/citologia , Escherichia coli/metabolismo , Transdução de Sinais , Animais , Proteínas de Bactérias , Células Quimiorreceptoras/química , Células Quimiorreceptoras/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Receptores de Superfície Celular , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 101(50): 17480-5, 2004 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-15572451

RESUMO

Transmembrane signaling in bacterial chemotaxis has become an important model system for experimental and theoretical studies. These studies have provided a wealth of detailed molecular structures, including the structures of CheA, CheW, and the cytoplasmic domain of the serine receptor Tsr. How these three proteins interact to form the receptor/signaling complex remains unknown. By using EM and single-particle image analysis, we present a three-dimensional reconstruction of the receptor/signaling complex. The complex contains CheA, CheW, and the cytoplasmic portion of the aspartate receptor Tar. We observe density consistent with a structure containing 24 aspartate-receptor monomers and additional density sufficient to house the expected four CheA monomers and six CheW monomers. Within this bipolar structure are four groups of three receptor dimers that are not threefold symmetric and are therefore unlike the symmetric trimers observed in the x-ray crystal structure of the cytoplasmic domain of the serine receptor. In the latter, the interdimer contacts occur in the signaling domains near the hairpin loop. In our structure, the signaling domains within trimers appear spaced apart by the presence of CheA and CheW. This structure argues against models where one CheA and one CheW bind to the outer face of each of the dimers in the trimer. This structure of the receptor/signaling complex provides an additional basis for understanding the architecture of the large arrays of chemotaxis receptors, CheA, and CheW found at the cell poles in motile bacteria.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Histidina Quinase , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/ultraestrutura
6.
Trends Cell Biol ; 14(9): 478-82, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15350975

RESUMO

Bacteria can detect and respond to a remarkably diverse set of environmental conditions. This ability enables motile species to integrate stimuli, to compare current surroundings with those of the recent past, and to adjust swimming behavior to move up gradients of attractants and avoid repellents. Many of the molecular details involved in the bacterial chemotaxis system have been elucidated. Several models have been proposed recently to explain how cells process external information through a patch of highly interactive transmembrane receptors and transduce this information to other components in the cytoplasm that, in turn, function to regulate motility.


Assuntos
Fenômenos Fisiológicos Bacterianos , Membrana Celular/metabolismo , Transdução de Sinais , Proteínas de Bactérias/fisiologia , Movimento Celular , Quimiotaxia , Citoplasma/metabolismo , Escherichia coli/metabolismo , Flagelos/metabolismo , Modelos Biológicos
7.
Curr Biol ; 14(12): R486-7, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15203024

RESUMO

Bacterial chemotaxis is mediated by transmembrane receptors that bind attractant and repellent chemicals and control an intracellular protein kinase. Each cell contains thousands of receptor subunits that form a tightly packed array at one pole. Recent studies of bacterial behavior have begun to reveal the molecular logic of this sensory architecture.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Movimento Celular/fisiologia , Quimiotaxia/fisiologia , Proteínas de Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Proteínas Quimiotáticas Aceptoras de Metil , Fosforilação
8.
Proc Natl Acad Sci U S A ; 100(24): 13910-5, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14623970

RESUMO

The environmental topology of complex structures is used by Escherichia coli to create traveling waves of high cell density, a prelude to quorum sensing. When cells are grown to a moderate density within a confining microenvironment, these traveling waves of cell density allow the cells to find and collapse into confining topologies, which are unstable to population fluctuations above a critical threshold. This was first observed in mazes designed to mimic complex environments, then more clearly in a simpler geometry consisting of a large open area surrounding a square (250 x 250 microm) with a narrow opening of 10-30 microm. Our results thus show that under nutrient-deprived conditions bacteria search out each other in a collective manner and that the bacteria can dynamically confine themselves to highly enclosed spaces.


Assuntos
Quimiotaxia/fisiologia , Escherichia coli/fisiologia , Fenômenos Biofísicos , Biofísica , Escherichia coli/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Recombinantes/genética
9.
Biochemistry ; 42(47): 14075-82, 2003 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-14636076

RESUMO

Response regulator proteins are phosphorylated on a conserved aspartate to activate responses to environmental signals. An intrinsic autophosphatase activity limits the duration of the phosphorylated state. We have previously hypothesized that dephosphorylation might proceed through an intramolecular attack, leading to succinimide formation, and such an intramolecular dephosphorylation event is seen for CheY and OmpR during mass spectrometric analysis [Napper, S., Wolanin, P. M., Webre, D. J., Kindrachuk, J., Waygood, B., and Stock, J. B. (2003) FEBS Lett 538, 77-80]. Succinimide formation is usually associated with the spontaneous deamidation of Asn residues. We show here that an Asp57 to Asn mutant of the CheY chemotaxis response regulator undergoes an unusually rapid deamidation back to the wild-type Asp57, supporting the hypothesis that the active site of CheY is poised for succinimide formation. In contrast, we also show that the major route of phosphoaspartate hydrolysis in CheY occurs through water attack on the phosphorus both during autophosphatase activity and during CheZ-mediated dephosphorylation. Thus, CheY dephosphorylation does not usually proceed via a succinimide or any other intramolecular attack.


Assuntos
Proteínas de Bactérias/química , Quimiotaxia , Proteínas de Membrana/química , Monoéster Fosfórico Hidrolases/química , Salmonella typhimurium/enzimologia , Amidas/química , Sequência de Aminoácidos , Asparagina/genética , Ácido Aspártico/genética , Proteínas de Bactérias/genética , Quimiotaxia/genética , Cromatografia Líquida de Alta Pressão , Estabilidade Enzimática , Hidrólise , Focalização Isoelétrica , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil , Dados de Sequência Molecular , Isótopos de Oxigênio/metabolismo , Fosfoproteínas/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Radioisótopos de Fósforo/metabolismo , Salmonella typhimurium/genética , Succinimidas/química , Succinimidas/metabolismo
11.
FEBS Lett ; 538(1-3): 77-80, 2003 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-12633856

RESUMO

Aspartate phosphorylation induces changes in protein conformation that are used to regulate processes ranging from gene expression and cell differentiation to cell motility and the generation of electrochemical gradients across membranes. We show here that dephosphorylation of the phosphoaspartate in the chemotaxis response regulator CheY can result in the loss of a water molecule that may be due to formation of a succinimide intermediate.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Bactérias , Proteínas de Membrana/química , Ácido Aspártico/química , Espectrometria de Massas , Proteínas Quimiotáticas Aceptoras de Metil , Fosforilação
13.
Genome Biol ; 3(10): REVIEWS3013, 2002 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-12372152

RESUMO

Histidine protein kinases (HPKs) are a large family of signal-transduction enzymes that autophosphorylate on a conserved histidine residue. HPKs form two-component signaling systems together with their downstream target proteins, the response regulators, which have a conserved aspartate in a so-called 'receiver domain' that is phosphorylated by the HPK. Two-component signal transduction is prevalent in bacteria and is also widely used by eukaryotes outside the animal kingdom. The typical HPK is a transmembrane receptor with an amino-terminal extracellular sensing domain and a carboxy-terminal cytosolic signaling domain; most, if not all, HPKs function as dimers. They show little similarity to protein kinases that phosphorylate serine, threonine or tyrosine residues, but may share a distant evolutionary relationship with these enzymes. In excess of a thousand known genes encode HPKs, which are important for multiple functions in bacteria, including chemotaxis and quorum sensing, and in eukaryotes, including hormone-dependent developmental processes. The proteins divide into at least 11 subfamilies, only one of which is present in eukaryotes, suggesting that lateral gene transfer gave rise to two-component signaling in these organisms.


Assuntos
Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Células Eucarióticas/enzimologia , Evolução Molecular , Histidina Quinase , Modelos Moleculares , Dados de Sequência Molecular , Células Procarióticas/enzimologia , Proteínas Quinases/química , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Homologia de Sequência de Aminoácidos
14.
Protein Sci ; 11(11): 2644-54, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12381847

RESUMO

Response regulator proteins of two-component systems are usually activated by phosphorylation. The phosphorylated response regulator protein CheY-P mediates the chemotaxis response in Escherichia coli. We performed random mutagenesis and selected CheY mutants that are constitutively active in the absence of phosphorylation. Although a single amino acid substitution can lead to constitutive activation, no single DNA base change can effect such a transition. Numerous different sets of mutations that activate in synergy were selected in several different combinations. These mutations were all located on the side of CheY defined by alpha4, beta5, alpha5, and alpha1. Our findings argue against the two-state hypothesis for response regulator activation. We propose an alternative intermolecular mechanism that involves a dynamic interplay between response regulators and their effector targets.


Assuntos
Proteínas de Bactérias , Quimiotaxia , Escherichia coli/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Quimiotaxia/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Mutagênese , Mutação , Fosforilação , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais/fisiologia
15.
Curr Biol ; 12(11): R399-401, 2002 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-12062075

RESUMO

The organization of transmembrane receptors into higher-order arrays occurs in cells as different as bacteria, lymphocytes and neurons. What are the implications of receptor clustering for short-term and long-term signaling processes that occur in response to ligand binding?


Assuntos
Proteínas de Membrana/fisiologia , Transdução de Sinais , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo
16.
Sci STKE ; 2002(132): pe25, 2002 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-12011495

RESUMO

Motile bacteria respond to attractants and repellents in their environment by changing their movement. Stock et al. describe the similarities of the bacterial chemotaxis signaling system to eukaryotic signaling cascades. Also included is a discussion of how the ordered signaling complex of the receptor, the kinase CheA, and the kinase regulator CheW can be thought of as a primitive "probrain" to allow the integration of signals to produce the optimal cellular response.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia/fisiologia , Animais , Proteínas de Bactérias/fisiologia , Movimento Celular/fisiologia , Escherichia coli/fisiologia , Proteínas de Escherichia coli , Histidina Quinase , Proteínas de Membrana/fisiologia , Proteínas Quimiotáticas Aceptoras de Metil , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...