Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Anal Bioanal Chem ; 380(3): 419-29, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15448969

RESUMO

This article describes the applicability of multivariate projection techniques, such as principal-component analysis (PCA) and partial least-squares (PLS) projections to latent structures, to the large-volume high-density data structures obtained within genomics, proteomics, and metabonomics. PCA and PLS, and their extensions, derive their usefulness from their ability to analyze data with many, noisy, collinear, and even incomplete variables in both X and Y. Three examples are used as illustrations: the first example is a genomics data set and involves modeling of microarray data of cell cycle-regulated genes in the microorganism Saccharomyces cerevisiae. The second example contains NMR-metabonomics data, measured on urine samples of male rats treated with either of the drugs chloroquine or amiodarone. The third and last data set describes sequence-function classification studies in a set of G-protein-coupled receptors using hierarchical PCA.


Assuntos
Técnicas de Química Analítica/métodos , Genômica/métodos , Metabolismo , Proteômica/métodos , Animais , Ciclo Celular/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes cdc , Análise dos Mínimos Quadrados , Fosfolipídeos/metabolismo , Análise de Componente Principal , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
3.
J Comput Aided Mol Des ; 16(10): 711-26, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12650589

RESUMO

Multivariate PCA- and PLS-models involving many variables are often difficult to interpret, because plots and lists of loadings, coefficients, VIPs, etc, rapidly become messy and hard to overview. There may then be a strong temptation to eliminate variables to obtain a smaller data set. Such a reduction of variables, however, often removes information and makes the modelling efforts less reliable. Model interpretation may be misleading and predictive power may deteriorate. A better alternative is usually to partition the variables into blocks of logically related variables and apply hierarchical data analysis. Such blocked data may be analyzed by PCA and PLS. This modelling forms the base-level of the hierarchical modelling set-up. On the base-level in-depth information is extracted for the different blocks. The score vectors formed on the base-level, here called 'super variables', may be linked together in new matrices on the top-level. On the top-level superficial relationships between the X- and the Y-data are investigated. In this paper the basic principles of hierarchical modelling by means of PCA and PLS are reviewed. One objective of the paper is to disseminate this concept to a broader QSAR audience. The hierarchical methods are used to analyze a set of 10 haloalkanes for which K = 30 chemical descriptors and M = 255 biological responses have been gathered. Due to the complexity of the biological data, they are sub-divided in four blocks. All the modelling steps on the base-level and the top-level are reported and the final QSAR model is interpreted thoroughly.


Assuntos
Alcanos/química , Técnicas de Química Combinatória/métodos , Simulação por Computador , Modelos Biológicos , Modelos Moleculares , Modelos Estatísticos , Análise dos Mínimos Quadrados , Modelos Químicos , Análise Multivariada , Análise de Componente Principal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...